VideoDetection / icpr2020dfdc /train_triplet.py
Mohamed Almukhtar
Duplicate from malmukhtar/ImageDetection
fc3814c
raw
history blame
19.6 kB
"""
Video Face Manipulation Detection Through Ensemble of CNNs
Image and Sound Processing Lab - Politecnico di Milano
Nicolò Bonettini
Edoardo Daniele Cannas
Sara Mandelli
Luca Bondi
Paolo Bestagini
"""
import argparse
import os
import shutil
import warnings
import numpy as np
import torch
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import torch.nn as nn
import torch.optim as optim
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from tqdm import tqdm
from architectures import tripletnet
from train_binclass import save_model, tb_attention
from isplutils.data import FrameFaceIterableDataset
from isplutils.data_siamese import FrameFaceTripletIterableDataset
from isplutils import split, utils
def main():
# Args
parser = argparse.ArgumentParser()
parser.add_argument('--net', type=str, help='Net model class', required=True)
parser.add_argument('--traindb', type=str, help='Training datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--valdb', type=str, help='Validation datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--dfdc_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--dfdc_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--ffpp_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
parser.add_argument('--ffpp_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
parser.add_argument('--face', type=str, help='Face crop or scale', required=True,
choices=['scale', 'tight'])
parser.add_argument('--size', type=int, help='Train patch size', required=True)
parser.add_argument('--batch', type=int, help='Batch size to fit in GPU memory', default=12)
parser.add_argument('--lr', type=float, default=1e-5, help='Learning rate')
parser.add_argument('--valint', type=int, help='Validation interval (iterations)', default=500)
parser.add_argument('--patience', type=int, help='Patience before dropping the LR [validation intervals]',
default=10)
parser.add_argument('--maxiter', type=int, help='Maximum number of iterations', default=20000)
parser.add_argument('--init', type=str, help='Weight initialization file')
parser.add_argument('--scratch', action='store_true', help='Train from scratch')
parser.add_argument('--traintriplets', type=int, help='Limit the number of train triplets per epoch', default=-1)
parser.add_argument('--valtriplets', type=int, help='Limit the number of validation triplets per epoch',
default=2000)
parser.add_argument('--logint', type=int, help='Training log interval (iterations)', default=100)
parser.add_argument('--workers', type=int, help='Num workers for data loaders', default=6)
parser.add_argument('--device', type=int, help='GPU device id', default=0)
parser.add_argument('--seed', type=int, help='Random seed', default=0)
parser.add_argument('--debug', action='store_true', help='Activate debug')
parser.add_argument('--suffix', type=str, help='Suffix to default tag')
parser.add_argument('--attention', action='store_true',
help='Enable Tensorboard log of attention masks')
parser.add_argument('--embedding', action='store_true', help='Activate embedding visualization in TensorBoard')
parser.add_argument('--embeddingint', type=int, help='Embedding visualization interval in TensorBoard',
default=5000)
parser.add_argument('--log_dir', type=str, help='Directory for saving the training logs',
default='runs/triplet/')
parser.add_argument('--models_dir', type=str, help='Directory for saving the models weights',
default='weights/triplet/')
args = parser.parse_args()
# Parse arguments
net_class = getattr(tripletnet, args.net)
train_datasets = args.traindb
val_datasets = args.valdb
dfdc_df_path = args.dfdc_faces_df_path
ffpp_df_path = args.ffpp_faces_df_path
dfdc_faces_dir = args.dfdc_faces_dir
ffpp_faces_dir = args.ffpp_faces_dir
face_policy = args.face
face_size = args.size
batch_size = args.batch
initial_lr = args.lr
validation_interval = args.valint
patience = args.patience
max_num_iterations = args.maxiter
initial_model = args.init
train_from_scratch = args.scratch
max_train_triplets = args.traintriplets
max_val_triplets = args.valtriplets
log_interval = args.logint
num_workers = args.workers
device = torch.device('cuda:{:d}'.format(args.device)) if torch.cuda.is_available() else torch.device('cpu')
seed = args.seed
debug = args.debug
suffix = args.suffix
enable_attention = args.attention
enable_embedding = args.embedding
embedding_interval = args.embeddingint
weights_folder = args.models_dir
logs_folder = args.log_dir
# Random initialization
np.random.seed(seed)
torch.random.manual_seed(seed)
# Load net
net: nn.Module = net_class().to(device)
# Loss and optimizers
criterion = nn.TripletMarginLoss()
min_lr = initial_lr * 1e-5
optimizer = optim.Adam(net.get_trainable_parameters(), lr=initial_lr)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
mode='min',
factor=0.1,
patience=patience,
cooldown=2 * patience,
min_lr=min_lr,
)
tag = utils.make_train_tag(net_class=net_class,
traindb=train_datasets,
face_policy=face_policy,
patch_size=face_size,
seed=seed,
suffix=suffix,
debug=debug,
)
# Model checkpoint paths
bestval_path = os.path.join(weights_folder, tag, 'bestval.pth')
last_path = os.path.join(weights_folder, tag, 'last.pth')
periodic_path = os.path.join(weights_folder, tag, 'it{:06d}.pth')
os.makedirs(os.path.join(weights_folder, tag), exist_ok=True)
# Load model
val_loss = min_val_loss = 20
epoch = iteration = 0
net_state = None
opt_state = None
if initial_model is not None:
# If given load initial model
print('Loading model form: {}'.format(initial_model))
state = torch.load(initial_model, map_location='cpu')
net_state = state['net']
elif not train_from_scratch and os.path.exists(last_path):
print('Loading model form: {}'.format(last_path))
state = torch.load(last_path, map_location='cpu')
net_state = state['net']
opt_state = state['opt']
iteration = state['iteration'] + 1
epoch = state['epoch']
if not train_from_scratch and os.path.exists(bestval_path):
state = torch.load(bestval_path, map_location='cpu')
min_val_loss = state['val_loss']
if net_state is not None:
adapt_binclass_model(net_state)
incomp_keys = net.load_state_dict(net_state, strict=False)
print(incomp_keys)
if opt_state is not None:
for param_group in opt_state['param_groups']:
param_group['lr'] = initial_lr
optimizer.load_state_dict(opt_state)
# Initialize Tensorboard
logdir = os.path.join(logs_folder, tag)
if iteration == 0:
# If training from scratch or initialization remove history if exists
shutil.rmtree(logdir, ignore_errors=True)
# TensorboardX instance
tb = SummaryWriter(logdir=logdir)
if iteration == 0:
dummy = torch.randn((1, 3, face_size, face_size), device=device)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
tb.add_graph(net, [dummy, dummy, dummy], verbose=False)
transformer = utils.get_transformer(face_policy=face_policy, patch_size=face_size,
net_normalizer=net.get_normalizer(), train=True)
# Datasets and data loaders
print('Loading data')
# Check if paths for DFDC and FF++ extracted faces and DataFrames are provided
for dataset in train_datasets:
if dataset.split('-')[0] == 'dfdc' and (dfdc_df_path is None or dfdc_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for DFDC faces for training!')
elif dataset.split('-')[0] == 'ff' and (ffpp_df_path is None or ffpp_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for FF++ faces for training!')
for dataset in val_datasets:
if dataset.split('-')[0] == 'dfdc' and (dfdc_df_path is None or dfdc_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for DFDC faces for validation!')
elif dataset.split('-')[0] == 'ff' and (ffpp_df_path is None or ffpp_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for FF++ faces for validation!')
splits = split.make_splits(dfdc_df=dfdc_df_path, ffpp_df=ffpp_df_path, dfdc_dir=dfdc_faces_dir,
ffpp_dir=ffpp_faces_dir, dbs={'train': train_datasets, 'val': val_datasets})
train_dfs = [splits['train'][db][0] for db in splits['train']]
train_roots = [splits['train'][db][1] for db in splits['train']]
val_roots = [splits['val'][db][1] for db in splits['val']]
val_dfs = [splits['val'][db][0] for db in splits['val']]
train_dataset = FrameFaceTripletIterableDataset(roots=train_roots,
dfs=train_dfs,
scale=face_policy,
num_triplets=max_train_triplets,
transformer=transformer,
size=face_size,
)
val_dataset = FrameFaceTripletIterableDataset(roots=val_roots,
dfs=val_dfs,
scale=face_policy,
num_triplets=max_val_triplets,
transformer=transformer,
size=face_size,
)
train_loader = DataLoader(train_dataset, num_workers=num_workers, batch_size=batch_size, )
val_loader = DataLoader(val_dataset, num_workers=num_workers, batch_size=batch_size, )
print('Training triplets: {}'.format(len(train_dataset)))
print('Validation triplets: {}'.format(len(val_dataset)))
if len(train_dataset) == 0:
print('No training triplets. Halt.')
return
if len(val_dataset) == 0:
print('No validation triplets. Halt.')
return
# Embedding visualization
if enable_embedding:
train_dataset_embedding = FrameFaceIterableDataset(roots=train_roots,
dfs=train_dfs,
scale=face_policy,
num_samples=64,
transformer=transformer,
size=face_size,
)
train_loader_embedding = DataLoader(train_dataset_embedding, num_workers=num_workers, batch_size=batch_size, )
val_dataset_embedding = FrameFaceIterableDataset(roots=val_roots,
dfs=val_dfs,
scale=face_policy,
num_samples=64,
transformer=transformer,
size=face_size,
)
val_loader_embedding = DataLoader(val_dataset_embedding, num_workers=num_workers, batch_size=batch_size, )
else:
train_loader_embedding = None
val_loader_embedding = None
stop = False
while not stop:
# Training
optimizer.zero_grad()
train_loss = train_num = 0
for train_batch in tqdm(train_loader, desc='Epoch {:03d}'.format(epoch), leave=False,
total=len(train_loader) // train_loader.batch_size):
net.train()
train_batch_num = len(train_batch[0])
train_num += train_batch_num
train_batch_loss = batch_forward(net, device, criterion, train_batch)
if torch.isnan(train_batch_loss):
raise ValueError('NaN loss')
train_loss += train_batch_loss.item() * train_batch_num
# Optimization
train_batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
# Logging
if iteration > 0 and (iteration % log_interval == 0):
train_loss /= train_num
tb.add_scalar('train/loss', train_loss, iteration)
tb.add_scalar('lr', optimizer.param_groups[0]['lr'], iteration)
tb.add_scalar('epoch', epoch, iteration)
# Checkpoint
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch, last_path)
train_loss = train_num = 0
# Validation
if iteration > 0 and (iteration % validation_interval == 0):
# Validation
val_loss = validation_routine(net, device, val_loader, criterion, tb, iteration, tag='val')
tb.flush()
# LR Scheduler
lr_scheduler.step(val_loss)
# Model checkpoint
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch,
periodic_path.format(iteration))
if val_loss < min_val_loss:
min_val_loss = val_loss
shutil.copy(periodic_path.format(iteration), bestval_path)
# Attention
if enable_attention and hasattr(net, 'feat_ext') and hasattr(net.feat_ext, 'get_attention'):
net.eval()
# For each dataframe show the attention for a real,fake couple of frames
for df, root, sample_idx, tag in [
(train_dfs[0], train_roots[0], train_dfs[0][train_dfs[0]['label'] == False].index[0],
'train/att/real'),
(train_dfs[0], train_roots[0], train_dfs[0][train_dfs[0]['label'] == True].index[0],
'train/att/fake'),
]:
record = df.loc[sample_idx]
tb_attention(tb, tag, iteration, net.feat_ext, device, face_size, face_policy,
transformer, root, record)
if optimizer.param_groups[0]['lr'] <= min_lr:
print('Reached minimum learning rate. Stopping.')
stop = True
break
# Embedding visualization
if enable_embedding:
if iteration > 0 and (iteration % embedding_interval == 0):
embedding_routine(net=net,
device=device,
loader=train_loader_embedding,
iteration=iteration,
tb=tb,
tag=tag + '/train')
embedding_routine(net=net,
device=device,
loader=val_loader_embedding,
iteration=iteration,
tb=tb,
tag=tag + '/val')
iteration += 1
if iteration > max_num_iterations:
print('Maximum number of iterations reached')
stop = True
break
# End of iteration
epoch += 1
# Needed to flush out last events
tb.close()
print('Completed')
def adapt_binclass_model(net_state):
# Check that the model contains at least one key starting with feat_ext, otherwise adapt
found = False
for key in net_state:
if key.startswith('feat_ext.'):
found = True
break
if not found:
# Adapt all keys
print('Adapting keys')
keys = [k for k in net_state]
for key in keys:
net_state['feat_ext.{}'.format(key)] = net_state[key]
del net_state[key]
def batch_forward(net: nn.Module, device, criterion, data: tuple) -> torch.Tensor:
if torch.cuda.is_available():
data = [i.cuda(device) for i in data]
out = net(*data)
loss = criterion(*out)
return loss
def validation_routine(net, device, val_loader, criterion, tb, iteration, tag):
net.eval()
val_num = 0
val_loss = 0.
for val_data in tqdm(val_loader, desc='Validation', leave=False, total=len(val_loader) // val_loader.batch_size):
val_batch_num = len(val_data[0])
with torch.no_grad():
val_batch_loss = batch_forward(net, device, criterion, val_data, )
val_num += val_batch_num
val_loss += val_batch_loss.item() * val_batch_num
# Logging
val_loss /= val_num
tb.add_scalar('{}/loss'.format(tag), val_loss, iteration)
return val_loss
def embedding_routine(net: nn.Module, device: torch.device, loader: DataLoader, tb: SummaryWriter, iteration: int,
tag: str):
net.eval()
labels = []
embeddings = []
for batch_data in loader:
batch_faces, batch_labels = batch_data
if torch.cuda.is_available():
batch_faces = batch_faces.to(device)
with torch.no_grad():
batch_emb = net.features(batch_faces)
labels.append(batch_labels.numpy().flatten())
embeddings.append(torch.flatten(batch_emb.cpu(), start_dim=1).numpy())
labels = list(np.concatenate(labels))
embeddings = np.concatenate(embeddings)
# Logging
tb.add_embedding(mat=embeddings, metadata=labels, tag=tag, global_step=iteration)
if __name__ == '__main__':
main()