Spaces:
Runtime error
Runtime error
""" | |
Run via: streamlit run app.py | |
""" | |
import json | |
import logging | |
import requests | |
import streamlit as st | |
import torch | |
from datasets import load_dataset | |
from datasets.dataset_dict import DatasetDict | |
from transformers import AutoTokenizer, AutoModel | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger = logging.getLogger(__name__) | |
model_hub_url = 'https://huggingface.co/malteos/aspect-scibert-task' | |
about_page_markdown = f"""# π Find Papers With Similar Task | |
See | |
- GitHub: https://github.com/malteos/aspect-document-embeddings | |
- Paper: #TODO | |
- Model hub: https://huggingface.co/malteos/aspect-scibert-task | |
""" | |
# Page setup | |
st.set_page_config( | |
page_title="Papers with similar Task", | |
page_icon="π", | |
layout="centered", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get help': None, | |
'Report a bug': None, | |
'About': about_page_markdown, | |
} | |
) | |
aspects = [ | |
'task', 'method', 'dataset' | |
] | |
tokenizer_name_or_path = f'malteos/aspect-scibert-{aspects[0]}' # any aspect | |
dataset_config = 'malteos/aspect-paper-metadata' | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path) | |
def st_load_model(name_or_path): | |
with st.spinner(f'Loading the model `{name_or_path}` (this might take a while)...'): | |
model = AutoModel.from_pretrained(name_or_path) | |
return model | |
def st_load_dataset(name_or_path): | |
with st.spinner('Loading the dataset (this might take a while)...'): | |
dataset = load_dataset(name_or_path) | |
if isinstance(dataset, DatasetDict): | |
dataset = dataset['train'] | |
# load existing FAISS index for each aspect | |
for a in aspects: | |
dataset.load_faiss_index(f'{a}_embeddings', f'{a}_embeddings.faiss') | |
return dataset | |
aspect_to_model = dict( | |
task=st_load_model('malteos/aspect-scibert-task'), | |
method=st_load_model('malteos/aspect-scibert-method'), | |
dataset=st_load_model('malteos/aspect-scibert-dataset'), | |
) | |
dataset = st_load_dataset(dataset_config) | |
def get_paper(doc_id): | |
res = requests.get(f'https://api.semanticscholar.org/v1/paper/{doc_id}') | |
if res.status_code == 200: | |
return res.json() | |
else: | |
raise ValueError(f'Cannot load paper from S2 API: {doc_id}') | |
def find_related_papers(paper_id, user_aspect): | |
with st.spinner('Searching for related papers...'): | |
paper = get_paper(paper_id) | |
if paper is None or 'title' not in paper or paper['title'] is None or 'abstract' not in paper or paper['abstract'] is None: | |
raise ValueError(f'Could not retrieve title and abstract for input paper: {paper_id}') | |
title_abs = paper['title'] + ': ' + paper['abstract'] | |
# preprocess the input | |
inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512) | |
# inference | |
outputs = aspect_to_model[user_aspect](**inputs) | |
# logger.info(f'attention_mask: {inputs["attention_mask"].shape}') | |
# | |
# logger.info(f'Outputs: {outputs["last_hidden_state"]}') | |
# logger.info(f'Outputs: {outputs["last_hidden_state"].shape}') | |
# Mean pool the token-level embeddings to get sentence-level embeddings | |
embeddings = torch.sum( | |
outputs["last_hidden_state"] * inputs['attention_mask'].unsqueeze(-1), dim=1 | |
) / torch.clamp(torch.sum(inputs['attention_mask'], dim=1, keepdims=True), min=1e-9) | |
result = dict( | |
paper=paper, | |
aspect=user_aspect, | |
) | |
result.update(dict( | |
#embeddings=embeddings.tolist(), | |
)) | |
# Retrieval | |
prompt = embeddings.detach().numpy()[0] | |
scores, retrieved_examples = dataset.get_nearest_examples(f'{user_aspect}_embeddings', prompt, k=10) | |
result.update(dict( | |
related_papers=retrieved_examples, | |
)) | |
return result | |
# Page | |
st.title('Aspect-based Paper Similarity') | |
st.markdown("""This demo showcases [Specialized Document Embeddings for Aspect-based Research Paper Similarity](#TODO).""") | |
# Introduction | |
st.markdown(f"""The model was trained using a triplet loss on machine learning papers from the [paperswithcode.com](https://paperswithcode.com/) corpus with the objective of pulling embeddings of papers with the same task, method, or datasetclose together. | |
For a more comprehensive overview of the model check out the [model card on π€ Model Hub]({model_hub_url}) or read [our paper](#TODO).""") | |
st.markdown("""Enter a ArXiv ID or a DOI of a paper for that you want find similar papers. | |
Try it yourself! π""", | |
unsafe_allow_html=True) | |
# Demo | |
with st.form("aspect-input", clear_on_submit=False): | |
paper_id = st.text_input( | |
label='Enter paper ID (format "arXiv:<arxiv_id>", "<doi>", or "ACL:<acl_id>"):', | |
# value="arXiv:2202.06671", | |
placeholder='Any DOI, ACL, or ArXiv ID' | |
) | |
example_labels = { | |
"arXiv:1902.06818": "Data augmentation for low resource sentiment analysis using generative adversarial networks", | |
"arXiv:2202.06671": "Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings", | |
"ACL:N19-1423": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", | |
"10.18653/v1/S16-1001": "SemEval-2016 Task 4: Sentiment Analysis in Twitter", | |
"10.1145/3065386": "ImageNet classification with deep convolutional neural networks", | |
} | |
example = st.selectbox( | |
label='Or select an example:', | |
options=list(example_labels.keys()), | |
format_func=lambda option_key: f'{example_labels[option_key]} ({option_key})', | |
) | |
user_aspect = st.radio( | |
label="In what aspect are you interested?", | |
options=aspects | |
) | |
cols = st.columns(3) | |
submitted = cols[1].form_submit_button("Find related papers") | |
# Listener | |
if submitted: | |
if paper_id or example: | |
try: | |
result = find_related_papers(paper_id if paper_id else example, user_aspect) | |
input_paper = result['paper'] | |
related_papers = result['related_papers'] | |
# with st.empty(): | |
st.markdown( | |
f'''Your input paper: \n\n<a href="{input_paper['url']}"><b>{input_paper['title']}</b></a> ({input_paper['year']})<hr />''', | |
unsafe_allow_html=True) | |
related_html = '<ul>' | |
for i in range(len(related_papers['paper_id'])): | |
related_html += f'''<li><a href="{related_papers['url_abs'][i]}">{related_papers['title'][i]}</a></li>''' | |
related_html += '</ul>' | |
st.markdown(f'''Related papers with similar {result['aspect']}: {related_html}''', unsafe_allow_html=True) | |
except (TypeError, ValueError, KeyError) as e: | |
st.error(f'**Error**: {e}') | |
else: | |
st.error('**Error**: No paper ID provided. Please provide a ArXiv ID or DOI.') | |