from __future__ import annotations import json import os import random import time import gradio as gr import pandas as pd from selenium import webdriver from selenium.common.exceptions import WebDriverException from PIL import Image from io import BytesIO import base64 from datetime import datetime from pathlib import Path from uuid import uuid4 import trafilatura from datasets import load_dataset from datasets import Features, Value, Sequence from huggingface_hub import CommitScheduler from huggingface_hub import whoami from languages import ISO_CODE_TO_LANGUAGE_NAME from texts import ABOUT_TEXT DISABLE_FETCH_URL = os.environ.get("DISABLE_FETCH_URL", False) if DISABLE_FETCH_URL: print("Fetch URL is disabled: Only dummy screenshot and text will be returned.") DATASET_REPO_ID = os.environ.get("DATASET_REPO_ID", "malteos/seed-crawl-urls") JSON_DATASET_DIR = Path("jsonl_dataset") JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) # Each instance of this space will spawn a unique file for each type of result # For the life of that space, it will append to that file pushed to a dataset every so often # It also is append_only, so no previous data will be overwritten JSON_DATASET_PATH = JSON_DATASET_DIR / f"urls-{uuid4()}.jsonl" if os.getenv("HF_TOKEN"): scheduler = CommitScheduler( repo_id=DATASET_REPO_ID, repo_type="dataset", folder_path=JSON_DATASET_DIR, path_in_repo="data", ) else: scheduler = None print("No HF_TOKEN found, results will not be uploaded to the hub.") def save_to_jsonl(obj: dict) -> None: if scheduler: with scheduler.lock: with JSON_DATASET_PATH.open("a") as f: json.dump(obj, f) f.write("\n") def get_candidate_urls(): return [ "http://example.com", "https://wikipedia.org/", "https://occiglot.eu", "https://ostendorff.org", "https://fr.wikipedia.org/", "https://amazon.com/" ] def pil_image_to_base64(image): # Save the image to a BytesIO buffer buffer = BytesIO() image.save(buffer, format="PNG") # You can change the format if needed buffer.seek(0) # Encode the bytes into a base64 string img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8") # Format the base64 string for use in an HTML image tag html_img_tag_src = f"data:image/png;base64,{img_base64}" return html_img_tag_src def fetch_screenshot_and_text_from_url(url): screen_width = 1080 height = 350 text = "" if DISABLE_FETCH_URL: screenshot = Image.new('RGB', (350, height)) text = f"Some dummy text for {url} (offline mode enabled)" else: options = webdriver.ChromeOptions() options.add_argument('--headless') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') try: driver = webdriver.Chrome(options=options) #driver.set_window_size(1080, 720) # Adjust the window size here driver.get(url) driver.implicitly_wait(10) # Wait for the page to fully load; you may adjust the sleep time or implement a wait condition # time.sleep(2) # fetch html from web page html_str = driver.page_source # Execute JS to find the full height of the rendered page scroll_height = driver.execute_script("return document.body.scrollHeight") # Resize the window to full page height driver.set_window_size(screen_width, max(scroll_height + 200, 900)) raw_screenshot = driver.get_screenshot_as_png() screenshot = Image.open(BytesIO(raw_screenshot)) # extract text text = trafilatura.extract(html_str) except WebDriverException as e: screenshot = Image.new('RGB', (1, 1)) finally: if driver: driver.quit() # embed base65 encoded image as tag into html string screenshot_html_str = f"""
""" # return gr.update(value=html_str, visible=True), text, gr.update(visible=True) return screenshot_html_str, text with gr.Blocks(fill_height=True) as demo: gr.Markdown( """ # Seed Crawl Annotator """) with gr.Tab("Contribute"): gr.Markdown("Welcome! This is a crowd-sourced effort to improve crawling of low-resource languages. Your contributions will be part of a public dataset.") profile_state = gr.State([]) gr.LoginButton() with gr.Column(visible=False) as wrapper_col: login_status = gr.Markdown("no", visible=False) def handle_login(profile: gr.OAuthProfile | None) -> dict: if profile: gr.Info(f"Logged in as {profile.username}") return { profile_state: f"{profile.username}", wrapper_col: gr.update(visible=True), login_status: "yes", } else: gr.Warning(f"You need to login to use this app.") return { profile_state: [], wrapper_col: gr.update(visible=False), login_status: "no", } demo.load(handle_login, inputs=None, outputs=[profile_state, wrapper_col, login_status]) url_field = gr.Textbox(label="Website URL", placeholder="Enter a URL you want to annotate", interactive=True) with gr.Row(): set_random_btn = gr.Button("Pick Random URL", variant="secondary", interactive=True) load_btn = gr.Button("Annotate URL", variant="primary", interactive=True) with gr.Row(): extracted_text = gr.Textbox( label="Extracted text", max_lines=15, lines=15, visible=True, placeholder="Click on `Load URL` to fetch Web page's text content." ) screenshot_scrollable = gr.HTML("", visible=False) with gr.Column(visible=False) as output_col: with gr.Row(): language_codes = gr.Dropdown( [("unknown", "unknown")] + [(f"{code}: {name}", code) for code, name in ISO_CODE_TO_LANGUAGE_NAME.items()], label="Language codes", multiselect=True, # allow_custom_value=True, ) categories = gr.CheckboxGroup(["News", "Culture/History", "Government", "Political Parties", "Other"], label="Categories") with gr.Row(): do_crawl_btn = gr.Button("✅ Do Crawl", elem_classes="success") dont_crawl_btn = gr.Button("❌ Don't Crawl", elem_classes="error") # random_subpage_btn = gr.Button("🔁 Load Another Subpage", variant="secondary") def set_random_url(): candidate_urls = get_candidate_urls() selected_url = random.choice(candidate_urls) return selected_url set_random_btn.click(fn=set_random_url, outputs=url_field) def load_url(url): screenshot_html_str, text = fetch_screenshot_and_text_from_url(url) if not screenshot_html_str or not text: gr.Error("Could not fetch data for url") else: return { screenshot_scrollable: gr.update(value=screenshot_html_str, visible=True), extracted_text: gr.update(value=text, visible=True), output_col: gr.update(visible=True), language_codes: "unknown", # Reset by set to invalid value # gr.update(None, label=url), categories: gr.update(value=None), } load_btn.click(fn=load_url, inputs=url_field, outputs=[screenshot_scrollable, extracted_text, output_col, language_codes, categories], api_name="load_url") def do_crawl_error_handler(msg): # error response print("error -> no changes") gr.Warning(f"❌ Error: {msg}") return { url_field: gr.update(), output_col: gr.update(), extracted_text: gr.update(), screenshot_scrollable: gr.update(), } def do_crawl(profile_state, url, language_codes, categories, do_crawl=True): print(f"{url=}") print(f"{language_codes=}") print(f"{categories=}") print(f"{do_crawl=}") if not profile_state: return do_crawl_error_handler("You are not authenticated.") elif len(url) <= 0: return do_crawl_error_handler("URL is empty.") elif len(categories) <= 0: return do_crawl_error_handler("You must select at least one category.") elif len(language_codes) <= 0: return do_crawl_error_handler("You must select at least one language.") else: # save_to_jsonl({ "url": url, "language_codes": language_codes, "categories": categories, "do_crawl": int(do_crawl), "username": profile_state, "submission_datetime": datetime.now().isoformat(), }) # html_str = f"Thanks {profile_state}, we have saved your feedback!" gr.Info("✅ Thanks for your feedback. Let's continue!") return { url_field: "", # TODO fetch new url output_col: gr.update(visible=False), extracted_text: gr.update(value=None, visible=True), screenshot_scrollable: gr.update(value="", visible=False), } # def do_crawl(profile_state, url, language_codes, categories): # return do_crawl_or_not(profile_state, url, language_codes, categories, do_crawl=True) # def dont_crawl(profile_state, url, language_codes, categories): # return do_crawl_or_not(profile_state, url, language_codes, categories, do_crawl=False) do_crawl_btn.click( fn=do_crawl, inputs=[profile_state, url_field, language_codes, categories], outputs=[ url_field, output_col, extracted_text, screenshot_scrollable ], api_name="do_crawl", ) dont_crawl_btn.click( fn=do_crawl, inputs=[profile_state, url_field, language_codes, categories], outputs=[ url_field, output_col, extracted_text, screenshot_scrollable ], api_name="do_crawl", ) # dont_crawl_btn.click(fn=dont_crawl, inputs=[profile_state, url, language_codes, categories], outputs=[url, output_col, extracted_text, screenshot_scrollable], api_name="dont_crawl") # def random_subpage(url): # new_url = "http://example.com" # return [new_url, *fetch_screenshot_and_text_from_url(new_url)] # random_subpage_btn.click(fn=random_subpage, inputs=url, outputs=[url, screenshot_scrollable, extracted_text, output_col], api_name="load_random_subpage") with gr.Tab("Browse Contributions"): gr.Markdown("This page lists all the data we have collected so far. Please note that the list might be out-of-sync.") """ dataset_info: - config_name: base features: - name: url dtype: string - name: language_codes list: string - name: categories list: string - name: do_crawl dtype: int32 - name: username dtype: string - name: submission_datetime dtype: string """ features = Features({ "url": Value("string"), "language_codes": Sequence(Value(dtype="string")), "categories": Sequence(Value(dtype="string")), "do_crawl": Value("int32"), "username": Value("string"), "submission_datetime": Value("string"), }) try: ds = load_dataset(DATASET_REPO_ID, data_files={"train": "data/*.jsonl"}, features=features) df = ds["train"].to_pandas() gr.Dataframe(df) except ValueError as e: print(e) gr.Markdown("> Error: Dataset cannot be loaded.") with gr.Tab("About"): gr.Markdown(ABOUT_TEXT) if __name__ == "__main__": demo.launch()