import os from flask import Flask, render_template, redirect, url_for, request, flash from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user from werkzeug.security import generate_password_hash, check_password_hash from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM import gradio as gr from threading import Thread from time import perf_counter from typing import List import numpy as np app = Flask(__name__) app.config['SECRET_KEY'] = 'your_secret_key' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db' db = SQLAlchemy(app) login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), unique=True, nullable=False) password = db.Column(db.String(120), nullable=False) def __repr__(self): return '' % self.username # Create the database tables with app.app_context(): db.create_all() @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) @app.route('/', methods=['GET', 'POST']) def signup(): if request.method == 'POST': username = request.form['username'] password = request.form['password'] hashed_password = generate_password_hash(password, method='pbkdf2:sha256') new_user = User(username=username, password=hashed_password) db.session.add(new_user) db.session.commit() flash('Signup successful!', 'success') return redirect(url_for('login')) return render_template('signup.html') @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'POST': username = request.form['username'] password = request.form['password'] user = User.query.filter_by(username=username).first() if user and check_password_hash(user.password, password): login_user(user) return redirect(url_for('dashboard')) flash('Invalid username or password', 'danger') return render_template('login.html') @app.route('/dashboard') @login_required def dashboard(): return render_template('dashboard.html', name=current_user.username) @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('login')) # Gradio app integration model_dir = "C:/Users/KIIT/OneDrive/Desktop/INTEL/phi-2/INT8_compressed_weights" model_name = "susnato/phi-2" ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""} tokenizer = AutoTokenizer.from_pretrained(model_name) ov_model = OVModelForCausalLM.from_pretrained(model_dir, device="CPU", ov_config=ov_config) prompt_template = "{instruction}" end_key_token_id = tokenizer.eos_token_id pad_token_id = tokenizer.pad_token_id def estimate_latency(current_time, current_perf_text, new_gen_text, per_token_time, num_tokens): num_current_toks = len(tokenizer.encode(new_gen_text)) num_tokens += num_current_toks per_token_time.append(num_current_toks / current_time) if len(per_token_time) > 10 and len(per_token_time) % 4 == 0: current_bucket = per_token_time[:-10] return f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}", num_tokens return current_perf_text, num_tokens def run_generation(user_text, top_p, temperature, top_k, max_new_tokens, perf_text): prompt_text = prompt_template.format(instruction=user_text) model_inputs = tokenizer(prompt_text, return_tensors="pt") streamer = gr.utils.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, top_k=top_k, eos_token_id=end_key_token_id, pad_token_id=pad_token_id, ) t = Thread(target=ov_model.generate, kwargs=generate_kwargs) t.start() model_output = "" per_token_time = [] num_tokens = 0 start = perf_counter() for new_text in streamer: current_time = perf_counter() - start model_output += new_text perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens) yield model_output, perf_text start = perf_counter() return model_output, perf_text def reset_textbox(instruction, response, perf): return "", "", "" examples = [ "Give me a recipe for pizza with pineapple", "Write me a tweet about the new OpenVINO release", "Explain the difference between CPU and GPU", "Give five ideas for a great weekend with family", "Do Androids dream of Electric sheep?", "Who is Dolly?", "Please give me advice on how to write resume?", "Name 3 advantages to being a cat", "Write instructions on how to become a good AI engineer", "Write a love letter to my best friend", ] @app.route('/gradio') @login_required def gradio(): with gr.Blocks() as demo: gr.Markdown("# Question Answering with Model and OpenVINO.\nProvide instruction which describes a task below or select among predefined examples and model writes response that performs requested task.") with gr.Row(): with gr.Column(scale=4): user_text = gr.Textbox(placeholder="Write an email about an alpaca that likes flan", label="User instruction") model_output = gr.Textbox(label="Model response", interactive=False) performance = gr.Textbox(label="Performance", lines=1, interactive=False) with gr.Column(scale=1): button_clear = gr.Button(value="Clear") button_submit = gr.Button(value="Submit") gr.Examples(examples, user_text) with gr.Column(scale=1): max_new_tokens = gr.Slider(minimum=1, maximum=1000, value=256, step=1, interactive=True, label="Max New Tokens") top_p = gr.Slider(minimum=0.05, maximum=1.0, value=0.92, step=0.05, interactive=True, label="Top-p (nucleus sampling)") top_k = gr.Slider(minimum=0, maximum=50, value=0, step=1, interactive=True, label="Top-k") temperature = gr.Slider(minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="Temperature") user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens, performance], [model_output, performance]) button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens, performance], [model_output, performance]) button_clear.click(reset_textbox, [user_text, model_output, performance], [user_text, model_output, performance]) return demo.launch(share=True) if __name__ == '__main__': app.run(debug=True)