File size: 19,049 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "0293f65e",
   "metadata": {},
   "source": [
    "# Handwritten Chinese and Japanese OCR with OpenVINO™\n",
    "\n",
    "In this tutorial, we perform optical character recognition (OCR) for handwritten Chinese (simplified) and Japanese. An OCR tutorial using the Latin alphabet is available in [notebook 208](../optical-character-recognition/optical-character-recognition.ipynb). This model is capable of processing only one line of symbols at a time.\n",
    "\n",
    "The models used in this notebook are [`handwritten-japanese-recognition-0001`](https://docs.openvino.ai/2024/omz_models_model_handwritten_japanese_recognition_0001.html) and [`handwritten-simplified-chinese-0001`](https://docs.openvino.ai/2024/omz_models_model_handwritten_simplified_chinese_recognition_0001.html). To decode model outputs as readable text [`kondate_nakayosi`](https://github.com/openvinotoolkit/open_model_zoo/blob/master/data/dataset_classes/kondate_nakayosi.txt) and [`scut_ept`](https://github.com/openvinotoolkit/open_model_zoo/blob/master/data/dataset_classes/scut_ept.txt) charlists are used. Both models are available on [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/).\n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Imports](#Imports)\n",
    "- [Settings](#Settings)\n",
    "- [Select a Language](#Select-a-Language)\n",
    "- [Download the Model](#Download-the-Model)\n",
    "- [Load the Model and Execute](#Load-the-Model-and-Execute)\n",
    "- [Select inference device](#Select-inference-device)\n",
    "- [Fetch Information About Input and Output Layers](#Fetch-Information-About-Input-and-Output-Layers)\n",
    "- [Load an Image](#Load-an-Image)\n",
    "- [Visualize Input Image](#Visualize-Input-Image)\n",
    "- [Prepare Charlist](#Prepare-Charlist)\n",
    "- [Run Inference](#Run-Inference)\n",
    "- [Process the Output Data](#Process-the-Output-Data)\n",
    "- [Print the Output](#Print-the-Output)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b2642605",
   "metadata": {},
   "outputs": [],
   "source": [
    "import platform\n",
    "\n",
    "# Install openvino-dev package\n",
    "%pip install -q \"openvino>=2023.1.0\" opencv-python tqdm\n",
    "\n",
    "if platform.system() != \"Windows\":\n",
    "    %pip install -q \"matplotlib>=3.4\"\n",
    "else:\n",
    "    %pip install -q \"matplotlib>=3.4,<3.7\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "fda2e1e0",
   "metadata": {},
   "source": [
    "## Imports\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e0a6a0d5",
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "from collections import namedtuple\n",
    "from itertools import groupby\n",
    "\n",
    "import cv2\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import openvino as ov\n",
    "\n",
    "# Fetch `notebook_utils` module\n",
    "import requests\n",
    "\n",
    "r = requests.get(\n",
    "    url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
    ")\n",
    "\n",
    "open(\"notebook_utils.py\", \"w\").write(r.text)\n",
    "from notebook_utils import download_file"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "7a46517a",
   "metadata": {},
   "source": [
    "## Settings\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Set up all constants and folders used in this notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b50b2bad",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Directories where data will be placed.\n",
    "base_models_dir = \"models\"\n",
    "data_folder = \"data\"\n",
    "charlist_folder = f\"{data_folder}/text\"\n",
    "\n",
    "# Precision used by the model.\n",
    "precision = \"FP16\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "f3c93fed",
   "metadata": {},
   "source": [
    "To group files, you have to define the collection. In this case, use `namedtuple`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "17402fcc",
   "metadata": {},
   "outputs": [],
   "source": [
    "Language = namedtuple(typename=\"Language\", field_names=[\"model_name\", \"charlist_name\", \"demo_image_name\"])\n",
    "chinese_files = Language(\n",
    "    model_name=\"handwritten-simplified-chinese-recognition-0001\",\n",
    "    charlist_name=\"chinese_charlist.txt\",\n",
    "    demo_image_name=\"handwritten_chinese_test.jpg\",\n",
    ")\n",
    "japanese_files = Language(\n",
    "    model_name=\"handwritten-japanese-recognition-0001\",\n",
    "    charlist_name=\"japanese_charlist.txt\",\n",
    "    demo_image_name=\"handwritten_japanese_test.png\",\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "8c61827c",
   "metadata": {},
   "source": [
    "## Select a Language\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Depending on your choice you will need to change a line of code in the cell below.\n",
    "\n",
    "If you want to perform OCR on a text in Japanese, set `language = \"japanese\"`. For Chinese, set `language = \"chinese\"`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "1d3b1190",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Select the language by using either language=\"chinese\" or language=\"japanese\".\n",
    "language = \"chinese\"\n",
    "\n",
    "languages = {\"chinese\": chinese_files, \"japanese\": japanese_files}\n",
    "\n",
    "selected_language = languages.get(language)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "750355d4",
   "metadata": {},
   "source": [
    "## Download the Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "In addition to images and charlists, you need to download the model file. In the sections below, there are cells for downloading either the Chinese or Japanese model.\n",
    " \n",
    "If it is your first time running the notebook, the model will be downloaded. It may take a few minutes. \n",
    "\n",
    "Use `download_file` function from the utils package, which automatically creates a directory structure and downloads the selected model file. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "e8f266fa",
   "metadata": {},
   "outputs": [],
   "source": [
    "path_to_model = download_file(\n",
    "    url=f\"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/{selected_language.model_name}/{precision}/{selected_language.model_name}.xml\",\n",
    "    directory=base_models_dir,\n",
    ")\n",
    "_ = download_file(\n",
    "    url=f\"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/{selected_language.model_name}/{precision}/{selected_language.model_name}.bin\",\n",
    "    directory=base_models_dir,\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "6d026308",
   "metadata": {},
   "source": [
    "## Load the Model and Execute\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "When all files are downloaded and language is selected, read and compile the network to run inference. The path to the model is defined based on the selected language."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "7114e467",
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "core = ov.Core()\n",
    "model = core.read_model(model=path_to_model)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "9ecb4551",
   "metadata": {},
   "source": [
    "## Select inference device\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "select device from dropdown list for running inference using OpenVINO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "aaef9cca-de02-49b3-9544-d1c9cfce7792",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d80e65b78ae44972b9f64e84f91c7fae",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "024ad3a4",
   "metadata": {},
   "outputs": [],
   "source": [
    "compiled_model = core.compile_model(model=model, device_name=device.value)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "3df5b652",
   "metadata": {},
   "source": [
    "## Fetch Information About Input and Output Layers\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Now that the model is loaded, fetch information about the input and output layers (shape)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "7d31411a",
   "metadata": {},
   "outputs": [],
   "source": [
    "recognition_output_layer = compiled_model.output(0)\n",
    "recognition_input_layer = compiled_model.input(0)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "41307bc7",
   "metadata": {},
   "source": [
    "## Load an Image\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Next, load an image. The model expects a single-channel image as input, so the image is read in grayscale.\n",
    "\n",
    "After loading the input image, get information to use for calculating the scale ratio between required input layer height and the current image height. In the cell below, the image will be resized and padded to keep letters proportional and meet input shape."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "afa1d51a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Download the image from the openvino_notebooks storage based on the selected model.\n",
    "file_name = download_file(\n",
    "    \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/\" + selected_language.demo_image_name,\n",
    "    directory=data_folder,\n",
    ")\n",
    "\n",
    "# Text detection models expect an image in grayscale format.\n",
    "# IMPORTANT! This model enables reading only one line at time.\n",
    "\n",
    "# Read the image.\n",
    "image = cv2.imread(filename=str(file_name), flags=cv2.IMREAD_GRAYSCALE)\n",
    "\n",
    "# Fetch the shape.\n",
    "image_height, _ = image.shape\n",
    "\n",
    "# B,C,H,W = batch size, number of channels, height, width.\n",
    "_, _, H, W = recognition_input_layer.shape\n",
    "\n",
    "# Calculate scale ratio between the input shape height and image height to resize the image.\n",
    "scale_ratio = H / image_height\n",
    "\n",
    "# Resize the image to expected input sizes.\n",
    "resized_image = cv2.resize(image, None, fx=scale_ratio, fy=scale_ratio, interpolation=cv2.INTER_AREA)\n",
    "\n",
    "# Pad the image to match input size, without changing aspect ratio.\n",
    "resized_image = np.pad(resized_image, ((0, 0), (0, W - resized_image.shape[1])), mode=\"edge\")\n",
    "\n",
    "# Reshape to network input shape.\n",
    "input_image = resized_image[None, None, :, :]"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "ba364bee",
   "metadata": {},
   "source": [
    "## Visualize Input Image\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "After preprocessing, you can display the image."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "f7a8e437",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(20, 1))\n",
    "plt.axis(\"off\")\n",
    "plt.imshow(resized_image, cmap=\"gray\", vmin=0, vmax=255);"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "c6d4c642",
   "metadata": {},
   "source": [
    "## Prepare Charlist\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "The model is loaded and the image is ready. The only element left is the charlist, which is downloaded. You must add a blank symbol at the beginning of the charlist before using it. This is expected for both the Chinese and Japanese models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e35eae1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Download the image from the openvino_notebooks storage based on the selected model.\n",
    "used_charlist_file = download_file(\n",
    "    \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/text/\" + selected_language.charlist_name,\n",
    "    directory=charlist_folder,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "2cb18186",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get a dictionary to encode the output, based on model documentation.\n",
    "used_charlist = selected_language.charlist_name\n",
    "\n",
    "# With both models, there should be blank symbol added at index 0 of each charlist.\n",
    "blank_char = \"~\"\n",
    "\n",
    "with used_charlist_file.open(mode=\"r\", encoding=\"utf-8\") as charlist:\n",
    "    letters = blank_char + \"\".join(line.strip() for line in charlist)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "b6a4da65",
   "metadata": {},
   "source": [
    "## Run Inference\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Now, run inference. The `compiled_model()` function takes a list with input(s) in the same order as model input(s). Then, fetch the output from output tensors.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "e44a9de4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Run inference on the model\n",
    "predictions = compiled_model([input_image])[recognition_output_layer]"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "03a40d22",
   "metadata": {},
   "source": [
    "## Process the Output Data\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "The output of a model is in the `W x B x L` format, where:\n",
    "\n",
    "* W - output sequence length\n",
    "* B - batch size\n",
    "* L - confidence distribution across the supported symbols in Kondate and Nakayosi.\n",
    "\n",
    "To get a more human-readable format, select a symbol with the highest probability. When you hold a list of indexes that are predicted to have the highest probability, due to limitations in [CTC Decoding](https://towardsdatascience.com/beam-search-decoding-in-ctc-trained-neural-networks-5a889a3d85a7), you will remove concurrent symbols and then remove the blanks.\n",
    "\n",
    "Finally, get the symbols from corresponding indexes in the charlist."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "da1b8bc5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Remove a batch dimension.\n",
    "predictions = np.squeeze(predictions)\n",
    "\n",
    "# Run the `argmax` function to pick the symbols with the highest probability.\n",
    "predictions_indexes = np.argmax(predictions, axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "f6730159",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Use the `groupby` function to remove concurrent letters, as required by CTC greedy decoding.\n",
    "output_text_indexes = list(groupby(predictions_indexes))\n",
    "\n",
    "# Remove grouper objects.\n",
    "output_text_indexes, _ = np.transpose(output_text_indexes, (1, 0))\n",
    "\n",
    "# Remove blank symbols.\n",
    "output_text_indexes = output_text_indexes[output_text_indexes != 0]\n",
    "\n",
    "# Assign letters to indexes from the output array.\n",
    "output_text = [letters[letter_index] for letter_index in output_text_indexes]"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "ac88f622",
   "metadata": {},
   "source": [
    "## Print the Output\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Now, having a list of letters predicted by the model, you can display the image with predicted text printed below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "6f8a90f3",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(20, 1))\n",
    "plt.axis(\"off\")\n",
    "plt.imshow(resized_image, cmap=\"gray\", vmin=0, vmax=255)\n",
    "\n",
    "print(\"\".join(output_text))"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "ae617ccb002f72b3ab6d0069d721eac67ac2a969e83c083c4321cfcab0437cd1"
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "openvino_notebooks": {
   "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/handwritten-ocr/handwritten-ocr.png?raw=true",
   "tags": {
    "categories": [
     "Model Demos"
    ],
    "libraries": [],
    "other": [],
    "tasks": [
     "Image-to-Text"
    ]
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}