manan commited on
Commit
835771a
1 Parent(s): 3107fce

first commit

Browse files
Files changed (6) hide show
  1. __pycache__/model.cpython-37.pyc +0 -0
  2. app.py +17 -0
  3. app_stream.py +14 -0
  4. model.pth +3 -0
  5. model.py +5 -4
  6. requirements.txt +6 -0
__pycache__/model.cpython-37.pyc ADDED
Binary file (6.46 kB). View file
 
app.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import model
3
+
4
+
5
+ input_1 = gr.inputs.Textbox(lines=1, placeholder='Patient History', default="", label=None, optional=False)
6
+ input_2 = gr.inputs.Textbox(lines=1, placeholder='Feature Text', default="", label=None, optional=False)
7
+
8
+ output_1 = gr.outputs.Textbox(self, type="auto", label=None)
9
+
10
+ gr.Interface(
11
+ model.get_predictions,
12
+ inputs=[input_1, input_2],
13
+ outputs=[output_1],
14
+ title='Identify Key Phrases in Patient Notes from Medical Licensing Exams',
15
+ theme='dark',
16
+ )
17
+ gr.launch()
app_stream.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import model
3
+
4
+ st.title('Identify Key Phrases in Patient Notes from Medical Licensing Exams')
5
+
6
+ pn_history = st.text_area("Patient History")
7
+ feature_text = st.text_input('Feature Text')
8
+
9
+ label='submit'
10
+ if st.button(label):
11
+
12
+ if pn_history and feature_text != '':
13
+ pred = model.get_predictions(pn_history, feature_text)
14
+ st.write(pred)
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6cd45fa27f18598291557baea3fcafe14c0132bb506c4e2e23b294779daa5a5
3
+ size 498669869
model.py CHANGED
@@ -6,7 +6,7 @@ from tqdm.notebook import tqdm, trange
6
 
7
  import torch
8
  from torch import nn
9
- import transformers
10
  from transformers import AutoModel, AutoTokenizer, AutoConfig
11
 
12
 
@@ -237,14 +237,15 @@ def predict_location_preds(tokenizer, model, feature_text, pn_history):
237
 
238
  def get_predictions(feature_text, pn_history):
239
  location_preds, pred_string = predict_location_preds(tokenizer, model, [feature_text], [pn_history])
240
- print(pred_string)
 
241
 
242
  tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_path'])
243
- path = '../input/nbme-training-biomed-roberta-base/best_model_0.bin'
244
 
245
  model = NBMEModel().to(config['device'])
246
  model.load_state_dict(torch.load(path, map_location=torch.device(config['device']))['model'])
247
- model.eval();
248
 
249
  # input_text = create_sample_test()
250
  # feature_text = input_text.feature_text[0]
 
6
 
7
  import torch
8
  from torch import nn
9
+ # import transformers
10
  from transformers import AutoModel, AutoTokenizer, AutoConfig
11
 
12
 
 
237
 
238
  def get_predictions(feature_text, pn_history):
239
  location_preds, pred_string = predict_location_preds(tokenizer, model, [feature_text], [pn_history])
240
+ # print(pred_string)
241
+ return pred_string
242
 
243
  tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_path'])
244
+ path = 'model.pth'
245
 
246
  model = NBMEModel().to(config['device'])
247
  model.load_state_dict(torch.load(path, map_location=torch.device(config['device']))['model'])
248
+ model.eval()
249
 
250
  # input_text = create_sample_test()
251
  # feature_text = input_text.feature_text[0]
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gc
2
+ numpy
3
+ pandas
4
+ torch==1.9.1+cpu
5
+ transformers==4.12.5
6
+ tqdm