|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
from .arch_util import default_init_weights, make_layer, pixel_unshuffle |
|
|
|
|
|
class ResidualDenseBlock(nn.Module): |
|
"""Residual Dense Block. |
|
|
|
Used in RRDB block in ESRGAN. |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
num_grow_ch (int): Channels for each growth. |
|
""" |
|
|
|
def __init__(self, num_feat=64, num_grow_ch=32): |
|
super(ResidualDenseBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) |
|
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) |
|
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1) |
|
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1) |
|
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) |
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
|
|
|
|
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) |
|
|
|
def forward(self, x): |
|
x1 = self.lrelu(self.conv1(x)) |
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) |
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) |
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) |
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) |
|
|
|
return x5 * 0.2 + x |
|
|
|
|
|
class RRDB(nn.Module): |
|
"""Residual in Residual Dense Block. |
|
|
|
Used in RRDB-Net in ESRGAN. |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
num_grow_ch (int): Channels for each growth. |
|
""" |
|
|
|
def __init__(self, num_feat, num_grow_ch=32): |
|
super(RRDB, self).__init__() |
|
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch) |
|
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch) |
|
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch) |
|
|
|
def forward(self, x): |
|
out = self.rdb1(x) |
|
out = self.rdb2(out) |
|
out = self.rdb3(out) |
|
|
|
return out * 0.2 + x |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class RRDBNet(nn.Module): |
|
"""Networks consisting of Residual in Residual Dense Block, which is used |
|
in ESRGAN. |
|
|
|
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. |
|
|
|
We extend ESRGAN for scale x2 and scale x1. |
|
Note: This is one option for scale 1, scale 2 in RRDBNet. |
|
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size |
|
and enlarge the channel size before feeding inputs into the main ESRGAN architecture. |
|
|
|
Args: |
|
num_in_ch (int): Channel number of inputs. |
|
num_out_ch (int): Channel number of outputs. |
|
num_feat (int): Channel number of intermediate features. |
|
Default: 64 |
|
num_block (int): Block number in the trunk network. Defaults: 23 |
|
num_grow_ch (int): Channels for each growth. Default: 32. |
|
""" |
|
|
|
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32): |
|
super(RRDBNet, self).__init__() |
|
self.scale = scale |
|
if scale == 2: |
|
num_in_ch = num_in_ch * 4 |
|
elif scale == 1: |
|
num_in_ch = num_in_ch * 16 |
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch) |
|
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
|
|
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
|
|
def forward(self, x): |
|
if self.scale == 2: |
|
feat = pixel_unshuffle(x, scale=2) |
|
elif self.scale == 1: |
|
feat = pixel_unshuffle(x, scale=4) |
|
else: |
|
feat = x |
|
feat = self.conv_first(feat) |
|
body_feat = self.conv_body(self.body(feat)) |
|
feat = feat + body_feat |
|
|
|
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) |
|
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) |
|
out = self.conv_last(self.lrelu(self.conv_hr(feat))) |
|
return out |
|
|