|
import random |
|
import time |
|
from os import path as osp |
|
from torch.utils import data as data |
|
from torchvision.transforms.functional import normalize |
|
|
|
from basicsr.data.transforms import augment |
|
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class FFHQDataset(data.Dataset): |
|
"""FFHQ dataset for StyleGAN. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
io_backend (dict): IO backend type and other kwarg. |
|
mean (list | tuple): Image mean. |
|
std (list | tuple): Image std. |
|
use_hflip (bool): Whether to horizontally flip. |
|
|
|
""" |
|
|
|
def __init__(self, opt): |
|
super(FFHQDataset, self).__init__() |
|
self.opt = opt |
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
|
|
self.gt_folder = opt['dataroot_gt'] |
|
self.mean = opt['mean'] |
|
self.std = opt['std'] |
|
|
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.io_backend_opt['db_paths'] = self.gt_folder |
|
if not self.gt_folder.endswith('.lmdb'): |
|
raise ValueError("'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}") |
|
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: |
|
self.paths = [line.split('.')[0] for line in fin] |
|
else: |
|
|
|
self.paths = [osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000)] |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
gt_path = self.paths[index] |
|
|
|
retry = 3 |
|
while retry > 0: |
|
try: |
|
img_bytes = self.file_client.get(gt_path) |
|
except Exception as e: |
|
logger = get_root_logger() |
|
logger.warning(f'File client error: {e}, remaining retry times: {retry - 1}') |
|
|
|
index = random.randint(0, self.__len__()) |
|
gt_path = self.paths[index] |
|
time.sleep(1) |
|
else: |
|
break |
|
finally: |
|
retry -= 1 |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False) |
|
|
|
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True) |
|
|
|
normalize(img_gt, self.mean, self.std, inplace=True) |
|
return {'gt': img_gt, 'gt_path': gt_path} |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|