|
import torch |
|
from collections import OrderedDict |
|
|
|
from basicsr.archs import build_network |
|
from basicsr.losses import build_loss |
|
from basicsr.utils import get_root_logger |
|
from basicsr.utils.registry import MODEL_REGISTRY |
|
from .video_recurrent_model import VideoRecurrentModel |
|
|
|
|
|
@MODEL_REGISTRY.register() |
|
class VideoRecurrentGANModel(VideoRecurrentModel): |
|
|
|
def init_training_settings(self): |
|
train_opt = self.opt['train'] |
|
|
|
self.ema_decay = train_opt.get('ema_decay', 0) |
|
if self.ema_decay > 0: |
|
logger = get_root_logger() |
|
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}') |
|
|
|
|
|
|
|
self.net_g_ema = build_network(self.opt['network_g']).to(self.device) |
|
|
|
load_path = self.opt['path'].get('pretrain_network_g', None) |
|
if load_path is not None: |
|
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema') |
|
else: |
|
self.model_ema(0) |
|
self.net_g_ema.eval() |
|
|
|
|
|
self.net_d = build_network(self.opt['network_d']) |
|
self.net_d = self.model_to_device(self.net_d) |
|
self.print_network(self.net_d) |
|
|
|
|
|
load_path = self.opt['path'].get('pretrain_network_d', None) |
|
if load_path is not None: |
|
param_key = self.opt['path'].get('param_key_d', 'params') |
|
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key) |
|
|
|
self.net_g.train() |
|
self.net_d.train() |
|
|
|
|
|
if train_opt.get('pixel_opt'): |
|
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) |
|
else: |
|
self.cri_pix = None |
|
|
|
if train_opt.get('perceptual_opt'): |
|
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device) |
|
else: |
|
self.cri_perceptual = None |
|
|
|
if train_opt.get('gan_opt'): |
|
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) |
|
|
|
self.net_d_iters = train_opt.get('net_d_iters', 1) |
|
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0) |
|
|
|
|
|
self.setup_optimizers() |
|
self.setup_schedulers() |
|
|
|
def setup_optimizers(self): |
|
train_opt = self.opt['train'] |
|
if train_opt['fix_flow']: |
|
normal_params = [] |
|
flow_params = [] |
|
for name, param in self.net_g.named_parameters(): |
|
if 'spynet' in name: |
|
flow_params.append(param) |
|
else: |
|
normal_params.append(param) |
|
|
|
optim_params = [ |
|
{ |
|
'params': flow_params, |
|
'lr': train_opt['lr_flow'] |
|
}, |
|
{ |
|
'params': normal_params, |
|
'lr': train_opt['optim_g']['lr'] |
|
}, |
|
] |
|
else: |
|
optim_params = self.net_g.parameters() |
|
|
|
|
|
optim_type = train_opt['optim_g'].pop('type') |
|
self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g']) |
|
self.optimizers.append(self.optimizer_g) |
|
|
|
optim_type = train_opt['optim_d'].pop('type') |
|
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d']) |
|
self.optimizers.append(self.optimizer_d) |
|
|
|
def optimize_parameters(self, current_iter): |
|
logger = get_root_logger() |
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = False |
|
|
|
if self.fix_flow_iter: |
|
if current_iter == 1: |
|
logger.info(f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.') |
|
for name, param in self.net_g.named_parameters(): |
|
if 'spynet' in name or 'edvr' in name: |
|
param.requires_grad_(False) |
|
elif current_iter == self.fix_flow_iter: |
|
logger.warning('Train all the parameters.') |
|
self.net_g.requires_grad_(True) |
|
|
|
self.optimizer_g.zero_grad() |
|
self.output = self.net_g(self.lq) |
|
|
|
_, _, c, h, w = self.output.size() |
|
|
|
l_g_total = 0 |
|
loss_dict = OrderedDict() |
|
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): |
|
|
|
if self.cri_pix: |
|
l_g_pix = self.cri_pix(self.output, self.gt) |
|
l_g_total += l_g_pix |
|
loss_dict['l_g_pix'] = l_g_pix |
|
|
|
if self.cri_perceptual: |
|
l_g_percep, l_g_style = self.cri_perceptual(self.output.view(-1, c, h, w), self.gt.view(-1, c, h, w)) |
|
if l_g_percep is not None: |
|
l_g_total += l_g_percep |
|
loss_dict['l_g_percep'] = l_g_percep |
|
if l_g_style is not None: |
|
l_g_total += l_g_style |
|
loss_dict['l_g_style'] = l_g_style |
|
|
|
fake_g_pred = self.net_d(self.output.view(-1, c, h, w)) |
|
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False) |
|
l_g_total += l_g_gan |
|
loss_dict['l_g_gan'] = l_g_gan |
|
|
|
l_g_total.backward() |
|
self.optimizer_g.step() |
|
|
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = True |
|
|
|
self.optimizer_d.zero_grad() |
|
|
|
|
|
real_d_pred = self.net_d(self.gt.view(-1, c, h, w)) |
|
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True) |
|
loss_dict['l_d_real'] = l_d_real |
|
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) |
|
l_d_real.backward() |
|
|
|
|
|
fake_d_pred = self.net_d(self.output.view(-1, c, h, w).detach()) |
|
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True) |
|
loss_dict['l_d_fake'] = l_d_fake |
|
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) |
|
l_d_fake.backward() |
|
self.optimizer_d.step() |
|
|
|
self.log_dict = self.reduce_loss_dict(loss_dict) |
|
|
|
if self.ema_decay > 0: |
|
self.model_ema(decay=self.ema_decay) |
|
|
|
def save(self, epoch, current_iter): |
|
if self.ema_decay > 0: |
|
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema']) |
|
else: |
|
self.save_network(self.net_g, 'net_g', current_iter) |
|
self.save_network(self.net_d, 'net_d', current_iter) |
|
self.save_training_state(epoch, current_iter) |
|
|