import torch from collections import OrderedDict from basicsr.utils.registry import MODEL_REGISTRY from .srgan_model import SRGANModel @MODEL_REGISTRY.register() class ESRGANModel(SRGANModel): """ESRGAN model for single image super-resolution.""" def optimize_parameters(self, current_iter): # optimize net_g for p in self.net_d.parameters(): p.requires_grad = False self.optimizer_g.zero_grad() self.output = self.net_g(self.lq) l_g_total = 0 loss_dict = OrderedDict() if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): # pixel loss if self.cri_pix: l_g_pix = self.cri_pix(self.output, self.gt) l_g_total += l_g_pix loss_dict['l_g_pix'] = l_g_pix # perceptual loss if self.cri_perceptual: l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) if l_g_percep is not None: l_g_total += l_g_percep loss_dict['l_g_percep'] = l_g_percep if l_g_style is not None: l_g_total += l_g_style loss_dict['l_g_style'] = l_g_style # gan loss (relativistic gan) real_d_pred = self.net_d(self.gt).detach() fake_g_pred = self.net_d(self.output) l_g_real = self.cri_gan(real_d_pred - torch.mean(fake_g_pred), False, is_disc=False) l_g_fake = self.cri_gan(fake_g_pred - torch.mean(real_d_pred), True, is_disc=False) l_g_gan = (l_g_real + l_g_fake) / 2 l_g_total += l_g_gan loss_dict['l_g_gan'] = l_g_gan l_g_total.backward() self.optimizer_g.step() # optimize net_d for p in self.net_d.parameters(): p.requires_grad = True self.optimizer_d.zero_grad() # gan loss (relativistic gan) # In order to avoid the error in distributed training: # "Error detected in CudnnBatchNormBackward: RuntimeError: one of # the variables needed for gradient computation has been modified by # an inplace operation", # we separate the backwards for real and fake, and also detach the # tensor for calculating mean. # real fake_d_pred = self.net_d(self.output).detach() real_d_pred = self.net_d(self.gt) l_d_real = self.cri_gan(real_d_pred - torch.mean(fake_d_pred), True, is_disc=True) * 0.5 l_d_real.backward() # fake fake_d_pred = self.net_d(self.output.detach()) l_d_fake = self.cri_gan(fake_d_pred - torch.mean(real_d_pred.detach()), False, is_disc=True) * 0.5 l_d_fake.backward() self.optimizer_d.step() loss_dict['l_d_real'] = l_d_real loss_dict['l_d_fake'] = l_d_fake loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) self.log_dict = self.reduce_loss_dict(loss_dict) if self.ema_decay > 0: self.model_ema(decay=self.ema_decay)