|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
import inspect |
|
|
|
from collections import namedtuple |
|
|
|
from torch.fft import fftn, fftshift, ifftn, ifftshift |
|
|
|
from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0 |
|
|
|
|
|
|
|
def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor": |
|
"""Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497). |
|
|
|
This version of the method comes from here: |
|
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706 |
|
""" |
|
x = x_in |
|
B, C, H, W = x.shape |
|
|
|
|
|
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0: |
|
x = x.to(dtype=torch.float32) |
|
|
|
|
|
x_freq = fftn(x, dim=(-2, -1)) |
|
x_freq = fftshift(x_freq, dim=(-2, -1)) |
|
|
|
B, C, H, W = x_freq.shape |
|
mask = torch.ones((B, C, H, W), device=x.device) |
|
|
|
crow, ccol = H // 2, W // 2 |
|
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale |
|
x_freq = x_freq * mask |
|
|
|
|
|
x_freq = ifftshift(x_freq, dim=(-2, -1)) |
|
x_filtered = ifftn(x_freq, dim=(-2, -1)).real |
|
|
|
return x_filtered.to(dtype=x_in.dtype) |
|
|
|
|
|
def apply_freeu( |
|
resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs): |
|
"""Applies the FreeU mechanism as introduced in https: |
|
//arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU. |
|
|
|
Args: |
|
resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied. |
|
hidden_states (`torch.Tensor`): Inputs to the underlying block. |
|
res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block. |
|
s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. |
|
s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if resolution_idx == 0: |
|
num_half_channels = hidden_states.shape[1] // 2 |
|
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"] |
|
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"]) |
|
if resolution_idx == 1: |
|
num_half_channels = hidden_states.shape[1] // 2 |
|
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"] |
|
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"]) |
|
|
|
return hidden_states, res_hidden_states |
|
|
|
|
|
|
|
class LoRALinearLayer(nn.Module): |
|
r""" |
|
A linear layer that is used with LoRA. |
|
|
|
Parameters: |
|
in_features (`int`): |
|
Number of input features. |
|
out_features (`int`): |
|
Number of output features. |
|
rank (`int`, `optional`, defaults to 4): |
|
The rank of the LoRA layer. |
|
network_alpha (`float`, `optional`, defaults to `None`): |
|
The value of the network alpha used for stable learning and preventing underflow. This value has the same |
|
meaning as the `--network_alpha` option in the kohya-ss trainer script. See |
|
https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning |
|
device (`torch.device`, `optional`, defaults to `None`): |
|
The device to use for the layer's weights. |
|
dtype (`torch.dtype`, `optional`, defaults to `None`): |
|
The dtype to use for the layer's weights. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
rank: int = 4, |
|
network_alpha: Optional[float] = None, |
|
device: Optional[Union[torch.device, str]] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
super().__init__() |
|
|
|
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) |
|
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) |
|
|
|
|
|
self.network_alpha = network_alpha |
|
self.rank = rank |
|
self.out_features = out_features |
|
self.in_features = in_features |
|
|
|
nn.init.normal_(self.down.weight, std=1 / rank) |
|
nn.init.zeros_(self.up.weight) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
orig_dtype = hidden_states.dtype |
|
dtype = self.down.weight.dtype |
|
|
|
down_hidden_states = self.down(hidden_states.to(dtype)) |
|
up_hidden_states = self.up(down_hidden_states) |
|
|
|
if self.network_alpha is not None: |
|
up_hidden_states *= self.network_alpha / self.rank |
|
|
|
return up_hidden_states.to(orig_dtype) |
|
|
|
class LoRACompatibleLinear(nn.Linear): |
|
""" |
|
A Linear layer that can be used with LoRA. |
|
""" |
|
|
|
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.lora_layer = lora_layer |
|
|
|
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]): |
|
self.lora_layer = lora_layer |
|
|
|
def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False): |
|
if self.lora_layer is None: |
|
return |
|
|
|
dtype, device = self.weight.data.dtype, self.weight.data.device |
|
|
|
w_orig = self.weight.data.float() |
|
w_up = self.lora_layer.up.weight.data.float() |
|
w_down = self.lora_layer.down.weight.data.float() |
|
|
|
if self.lora_layer.network_alpha is not None: |
|
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank |
|
|
|
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) |
|
|
|
if safe_fusing and torch.isnan(fused_weight).any().item(): |
|
raise ValueError( |
|
"This LoRA weight seems to be broken. " |
|
f"Encountered NaN values when trying to fuse LoRA weights for {self}." |
|
"LoRA weights will not be fused." |
|
) |
|
|
|
self.weight.data = fused_weight.to(device=device, dtype=dtype) |
|
|
|
|
|
self.lora_layer = None |
|
|
|
|
|
self.w_up = w_up.cpu() |
|
self.w_down = w_down.cpu() |
|
self._lora_scale = lora_scale |
|
|
|
def _unfuse_lora(self): |
|
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None): |
|
return |
|
|
|
fused_weight = self.weight.data |
|
dtype, device = fused_weight.dtype, fused_weight.device |
|
|
|
w_up = self.w_up.to(device=device).float() |
|
w_down = self.w_down.to(device).float() |
|
|
|
unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) |
|
self.weight.data = unfused_weight.to(device=device, dtype=dtype) |
|
|
|
self.w_up = None |
|
self.w_down = None |
|
|
|
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: |
|
if self.lora_layer is None: |
|
out = super().forward(hidden_states) |
|
return out |
|
else: |
|
out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states)) |
|
return out |
|
|
|
class Timesteps(nn.Module): |
|
def __init__(self, num_channels: int = 320): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
|
|
def forward(self, timesteps): |
|
half_dim = self.num_channels // 2 |
|
exponent = -math.log(10000) * torch.arange( |
|
half_dim, dtype=torch.float32, device=timesteps.device |
|
) |
|
exponent = exponent / (half_dim - 0.0) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
sin_emb = torch.sin(emb) |
|
cos_emb = torch.cos(emb) |
|
emb = torch.cat([cos_emb, sin_emb], dim=-1) |
|
|
|
return emb |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__(self, in_features, out_features): |
|
super(TimestepEmbedding, self).__init__() |
|
self.linear_1 = nn.Linear(in_features, out_features, bias=True) |
|
self.act = nn.SiLU() |
|
self.linear_2 = nn.Linear(out_features, out_features, bias=True) |
|
|
|
def forward(self, sample): |
|
sample = self.linear_1(sample) |
|
sample = self.act(sample) |
|
sample = self.linear_2(sample) |
|
|
|
return sample |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
def __init__(self, in_channels, out_channels, conv_shortcut=True): |
|
super(ResnetBlock2D, self).__init__() |
|
self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-05, affine=True) |
|
self.conv1 = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.time_emb_proj = nn.Linear(1280, out_channels, bias=True) |
|
self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-05, affine=True) |
|
self.dropout = nn.Dropout(p=0.0, inplace=False) |
|
self.conv2 = nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.nonlinearity = nn.SiLU() |
|
self.conv_shortcut = None |
|
if conv_shortcut: |
|
self.conv_shortcut = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1 |
|
) |
|
|
|
def forward(self, input_tensor, temb): |
|
hidden_states = input_tensor |
|
hidden_states = self.norm1(hidden_states) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
temb = self.nonlinearity(temb) |
|
temb = self.time_emb_proj(temb)[:, :, None, None] |
|
hidden_states = hidden_states + temb |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = input_tensor + hidden_states |
|
|
|
return output_tensor |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, inner_dim, cross_attention_dim=None, num_heads=None, dropout=0.0, processor=None, scale_qk=True |
|
): |
|
super(Attention, self).__init__() |
|
if num_heads is None: |
|
self.head_dim = 64 |
|
self.num_heads = inner_dim // self.head_dim |
|
else: |
|
self.num_heads = num_heads |
|
self.head_dim = inner_dim // num_heads |
|
|
|
self.scale = self.head_dim**-0.5 |
|
if cross_attention_dim is None: |
|
cross_attention_dim = inner_dim |
|
self.to_q = LoRACompatibleLinear(inner_dim, inner_dim, bias=False) |
|
self.to_k = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False) |
|
self.to_v = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.ModuleList( |
|
[LoRACompatibleLinear(inner_dim, inner_dim), nn.Dropout(dropout, inplace=False)] |
|
) |
|
|
|
self.scale_qk = scale_qk |
|
if processor is None: |
|
processor = ( |
|
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() |
|
) |
|
self.set_processor(processor) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
**cross_attention_kwargs, |
|
) -> torch.Tensor: |
|
r""" |
|
The forward method of the `Attention` class. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
The hidden states of the query. |
|
encoder_hidden_states (`torch.Tensor`, *optional*): |
|
The hidden states of the encoder. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
The attention mask to use. If `None`, no mask is applied. |
|
**cross_attention_kwargs: |
|
Additional keyword arguments to pass along to the cross attention. |
|
|
|
Returns: |
|
`torch.Tensor`: The output of the attention layer. |
|
""" |
|
|
|
|
|
|
|
|
|
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) |
|
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters] |
|
if len(unused_kwargs) > 0: |
|
print( |
|
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." |
|
) |
|
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters} |
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
def orig_forward(self, hidden_states, encoder_hidden_states=None): |
|
q = self.to_q(hidden_states) |
|
k = ( |
|
self.to_k(encoder_hidden_states) |
|
if encoder_hidden_states is not None |
|
else self.to_k(hidden_states) |
|
) |
|
v = ( |
|
self.to_v(encoder_hidden_states) |
|
if encoder_hidden_states is not None |
|
else self.to_v(hidden_states) |
|
) |
|
b, t, c = q.size() |
|
|
|
q = q.view(q.size(0), q.size(1), self.num_heads, self.head_dim).transpose(1, 2) |
|
k = k.view(k.size(0), k.size(1), self.num_heads, self.head_dim).transpose(1, 2) |
|
v = v.view(v.size(0), v.size(1), self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
attn_output = F.scaled_dot_product_attention( |
|
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c) |
|
|
|
for layer in self.to_out: |
|
attn_output = layer(attn_output) |
|
|
|
return attn_output |
|
|
|
def set_processor(self, processor) -> None: |
|
r""" |
|
Set the attention processor to use. |
|
|
|
Args: |
|
processor (`AttnProcessor`): |
|
The attention processor to use. |
|
""" |
|
|
|
|
|
if ( |
|
hasattr(self, "processor") |
|
and isinstance(self.processor, torch.nn.Module) |
|
and not isinstance(processor, torch.nn.Module) |
|
): |
|
print(f"You are removing possibly trained weights of {self.processor} with {processor}") |
|
self._modules.pop("processor") |
|
|
|
self.processor = processor |
|
|
|
def get_processor(self, return_deprecated_lora: bool = False): |
|
r""" |
|
Get the attention processor in use. |
|
|
|
Args: |
|
return_deprecated_lora (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to return the deprecated LoRA attention processor. |
|
|
|
Returns: |
|
"AttentionProcessor": The attention processor in use. |
|
""" |
|
if not return_deprecated_lora: |
|
return self.processor |
|
|
|
|
|
|
|
|
|
is_lora_activated = { |
|
name: module.lora_layer is not None |
|
for name, module in self.named_modules() |
|
if hasattr(module, "lora_layer") |
|
} |
|
|
|
|
|
if not any(is_lora_activated.values()): |
|
return self.processor |
|
|
|
|
|
is_lora_activated.pop("add_k_proj", None) |
|
is_lora_activated.pop("add_v_proj", None) |
|
|
|
if not all(is_lora_activated.values()): |
|
raise ValueError( |
|
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" |
|
) |
|
|
|
|
|
non_lora_processor_cls_name = self.processor.__class__.__name__ |
|
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) |
|
|
|
hidden_size = self.inner_dim |
|
|
|
|
|
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: |
|
kwargs = { |
|
"cross_attention_dim": self.cross_attention_dim, |
|
"rank": self.to_q.lora_layer.rank, |
|
"network_alpha": self.to_q.lora_layer.network_alpha, |
|
"q_rank": self.to_q.lora_layer.rank, |
|
"q_hidden_size": self.to_q.lora_layer.out_features, |
|
"k_rank": self.to_k.lora_layer.rank, |
|
"k_hidden_size": self.to_k.lora_layer.out_features, |
|
"v_rank": self.to_v.lora_layer.rank, |
|
"v_hidden_size": self.to_v.lora_layer.out_features, |
|
"out_rank": self.to_out[0].lora_layer.rank, |
|
"out_hidden_size": self.to_out[0].lora_layer.out_features, |
|
} |
|
|
|
if hasattr(self.processor, "attention_op"): |
|
kwargs["attention_op"] = self.processor.attention_op |
|
|
|
lora_processor = lora_processor_cls(hidden_size, **kwargs) |
|
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) |
|
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) |
|
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) |
|
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) |
|
elif lora_processor_cls == LoRAAttnAddedKVProcessor: |
|
lora_processor = lora_processor_cls( |
|
hidden_size, |
|
cross_attention_dim=self.add_k_proj.weight.shape[0], |
|
rank=self.to_q.lora_layer.rank, |
|
network_alpha=self.to_q.lora_layer.network_alpha, |
|
) |
|
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) |
|
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) |
|
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) |
|
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) |
|
|
|
|
|
if self.add_k_proj.lora_layer is not None: |
|
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) |
|
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) |
|
else: |
|
lora_processor.add_k_proj_lora = None |
|
lora_processor.add_v_proj_lora = None |
|
else: |
|
raise ValueError(f"{lora_processor_cls} does not exist.") |
|
|
|
return lora_processor |
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, in_features, out_features): |
|
super(GEGLU, self).__init__() |
|
self.proj = nn.Linear(in_features, out_features * 2, bias=True) |
|
|
|
def forward(self, x): |
|
x_proj = self.proj(x) |
|
x1, x2 = x_proj.chunk(2, dim=-1) |
|
return x1 * torch.nn.functional.gelu(x2) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, in_features, out_features): |
|
super(FeedForward, self).__init__() |
|
|
|
self.net = nn.ModuleList( |
|
[ |
|
GEGLU(in_features, out_features * 4), |
|
nn.Dropout(p=0.0, inplace=False), |
|
nn.Linear(out_features * 4, out_features, bias=True), |
|
] |
|
) |
|
|
|
def forward(self, x): |
|
for layer in self.net: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
def __init__(self, hidden_size): |
|
super(BasicTransformerBlock, self).__init__() |
|
self.norm1 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True) |
|
self.attn1 = Attention(hidden_size) |
|
self.norm2 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True) |
|
self.attn2 = Attention(hidden_size, 2048) |
|
self.norm3 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True) |
|
self.ff = FeedForward(hidden_size, hidden_size) |
|
|
|
def forward(self, x, encoder_hidden_states=None): |
|
residual = x |
|
|
|
x = self.norm1(x) |
|
x = self.attn1(x) |
|
x = x + residual |
|
|
|
residual = x |
|
|
|
x = self.norm2(x) |
|
if encoder_hidden_states is not None: |
|
x = self.attn2(x, encoder_hidden_states) |
|
else: |
|
x = self.attn2(x) |
|
x = x + residual |
|
|
|
residual = x |
|
|
|
x = self.norm3(x) |
|
x = self.ff(x) |
|
x = x + residual |
|
return x |
|
|
|
|
|
class Transformer2DModel(nn.Module): |
|
def __init__(self, in_channels, out_channels, n_layers): |
|
super(Transformer2DModel, self).__init__() |
|
self.norm = nn.GroupNorm(32, in_channels, eps=1e-06, affine=True) |
|
self.proj_in = nn.Linear(in_channels, out_channels, bias=True) |
|
self.transformer_blocks = nn.ModuleList( |
|
[BasicTransformerBlock(out_channels) for _ in range(n_layers)] |
|
) |
|
self.proj_out = nn.Linear(out_channels, out_channels, bias=True) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None): |
|
batch, _, height, width = hidden_states.shape |
|
res = hidden_states |
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( |
|
batch, height * width, inner_dim |
|
) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states) |
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, width, inner_dim) |
|
.permute(0, 3, 1, 2) |
|
.contiguous() |
|
) |
|
|
|
return hidden_states + res |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(Downsample2D, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=2, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class Upsample2D(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(Upsample2D, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
x = F.interpolate(x, scale_factor=2.0, mode="nearest") |
|
return self.conv(x) |
|
|
|
|
|
class DownBlock2D(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(DownBlock2D, self).__init__() |
|
self.resnets = nn.ModuleList( |
|
[ |
|
ResnetBlock2D(in_channels, out_channels, conv_shortcut=False), |
|
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False), |
|
] |
|
) |
|
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)]) |
|
|
|
def forward(self, hidden_states, temb): |
|
output_states = [] |
|
for module in self.resnets: |
|
hidden_states = module(hidden_states, temb) |
|
output_states.append(hidden_states) |
|
|
|
hidden_states = self.downsamplers[0](hidden_states) |
|
output_states.append(hidden_states) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class CrossAttnDownBlock2D(nn.Module): |
|
def __init__(self, in_channels, out_channels, n_layers, has_downsamplers=True): |
|
super(CrossAttnDownBlock2D, self).__init__() |
|
self.attentions = nn.ModuleList( |
|
[ |
|
Transformer2DModel(out_channels, out_channels, n_layers), |
|
Transformer2DModel(out_channels, out_channels, n_layers), |
|
] |
|
) |
|
self.resnets = nn.ModuleList( |
|
[ |
|
ResnetBlock2D(in_channels, out_channels), |
|
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False), |
|
] |
|
) |
|
self.downsamplers = None |
|
if has_downsamplers: |
|
self.downsamplers = nn.ModuleList( |
|
[Downsample2D(out_channels, out_channels)] |
|
) |
|
|
|
def forward(self, hidden_states, temb, encoder_hidden_states): |
|
output_states = [] |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
output_states.append(hidden_states) |
|
|
|
if self.downsamplers is not None: |
|
hidden_states = self.downsamplers[0](hidden_states) |
|
output_states.append(hidden_states) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class CrossAttnUpBlock2D(nn.Module): |
|
def __init__(self, in_channels, out_channels, prev_output_channel, n_layers): |
|
super(CrossAttnUpBlock2D, self).__init__() |
|
self.attentions = nn.ModuleList( |
|
[ |
|
Transformer2DModel(out_channels, out_channels, n_layers), |
|
Transformer2DModel(out_channels, out_channels, n_layers), |
|
Transformer2DModel(out_channels, out_channels, n_layers), |
|
] |
|
) |
|
self.resnets = nn.ModuleList( |
|
[ |
|
ResnetBlock2D(prev_output_channel + out_channels, out_channels), |
|
ResnetBlock2D(2 * out_channels, out_channels), |
|
ResnetBlock2D(out_channels + in_channels, out_channels), |
|
] |
|
) |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)]) |
|
|
|
def forward( |
|
self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states |
|
): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpBlock2D(nn.Module): |
|
def __init__(self, in_channels, out_channels, prev_output_channel): |
|
super(UpBlock2D, self).__init__() |
|
self.resnets = nn.ModuleList( |
|
[ |
|
ResnetBlock2D(out_channels + prev_output_channel, out_channels), |
|
ResnetBlock2D(out_channels * 2, out_channels), |
|
ResnetBlock2D(out_channels + in_channels, out_channels), |
|
] |
|
) |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None): |
|
|
|
is_freeu_enabled = ( |
|
getattr(self, "s1", None) |
|
and getattr(self, "s2", None) |
|
and getattr(self, "b1", None) |
|
and getattr(self, "b2", None) |
|
and getattr(self, "resolution_idx", None) |
|
) |
|
|
|
for resnet in self.resnets: |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
|
|
if is_freeu_enabled: |
|
hidden_states, res_hidden_states = apply_freeu( |
|
self.resolution_idx, |
|
hidden_states, |
|
res_hidden_states, |
|
s1=self.s1, |
|
s2=self.s2, |
|
b1=self.b1, |
|
b2=self.b2, |
|
) |
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
class UNetMidBlock2DCrossAttn(nn.Module): |
|
def __init__(self, in_features): |
|
super(UNetMidBlock2DCrossAttn, self).__init__() |
|
self.attentions = nn.ModuleList( |
|
[Transformer2DModel(in_features, in_features, n_layers=10)] |
|
) |
|
self.resnets = nn.ModuleList( |
|
[ |
|
ResnetBlock2D(in_features, in_features, conv_shortcut=False), |
|
ResnetBlock2D(in_features, in_features, conv_shortcut=False), |
|
] |
|
) |
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None): |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class UNet2DConditionModel(nn.Module): |
|
def __init__(self): |
|
super(UNet2DConditionModel, self).__init__() |
|
|
|
|
|
|
|
|
|
self.config = namedtuple( |
|
"config", "in_channels addition_time_embed_dim sample_size" |
|
) |
|
self.config.in_channels = 4 |
|
self.config.addition_time_embed_dim = 256 |
|
self.config.sample_size = 128 |
|
|
|
self.conv_in = nn.Conv2d(4, 320, kernel_size=3, stride=1, padding=1) |
|
self.time_proj = Timesteps() |
|
self.time_embedding = TimestepEmbedding(in_features=320, out_features=1280) |
|
self.add_time_proj = Timesteps(256) |
|
self.add_embedding = TimestepEmbedding(in_features=2816, out_features=1280) |
|
self.down_blocks = nn.ModuleList( |
|
[ |
|
DownBlock2D(in_channels=320, out_channels=320), |
|
CrossAttnDownBlock2D(in_channels=320, out_channels=640, n_layers=2), |
|
CrossAttnDownBlock2D( |
|
in_channels=640, |
|
out_channels=1280, |
|
n_layers=10, |
|
has_downsamplers=False, |
|
), |
|
] |
|
) |
|
self.up_blocks = nn.ModuleList( |
|
[ |
|
CrossAttnUpBlock2D( |
|
in_channels=640, |
|
out_channels=1280, |
|
prev_output_channel=1280, |
|
n_layers=10, |
|
), |
|
CrossAttnUpBlock2D( |
|
in_channels=320, |
|
out_channels=640, |
|
prev_output_channel=1280, |
|
n_layers=2, |
|
), |
|
UpBlock2D(in_channels=320, out_channels=320, prev_output_channel=640), |
|
] |
|
) |
|
self.mid_block = UNetMidBlock2DCrossAttn(1280) |
|
self.conv_norm_out = nn.GroupNorm(32, 320, eps=1e-05, affine=True) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = nn.Conv2d(320, 4, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward( |
|
self, sample, timesteps, encoder_hidden_states, added_cond_kwargs, **kwargs |
|
): |
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
t_emb = self.time_proj(timesteps).to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb) |
|
|
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
|
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
|
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
|
|
emb = emb + aug_emb |
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
s0 = sample |
|
sample, [s1, s2, s3] = self.down_blocks[0]( |
|
sample, |
|
temb=emb, |
|
) |
|
|
|
sample, [s4, s5, s6] = self.down_blocks[1]( |
|
sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
sample, [s7, s8] = self.down_blocks[2]( |
|
sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
|
|
sample = self.mid_block( |
|
sample, emb, encoder_hidden_states=encoder_hidden_states |
|
) |
|
|
|
|
|
sample = self.up_blocks[0]( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=[s6, s7, s8], |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
sample = self.up_blocks[1]( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=[s3, s4, s5], |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
sample = self.up_blocks[2]( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=[s0, s1, s2], |
|
) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return [sample] |