Spaces:
Build error
Build error
File size: 8,086 Bytes
e78c13e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import tempfile
from pathlib import Path
import argparse
import shutil
import os
import glob
import cv2
import cog
from run import run_cmd
class Predictor(cog.Predictor):
def setup(self):
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_folder", type=str, default="input/cog_temp", help="Test images"
)
parser.add_argument(
"--output_folder",
type=str,
default="output",
help="Restored images, please use the absolute path",
)
parser.add_argument("--GPU", type=str, default="0", help="0,1,2")
parser.add_argument(
"--checkpoint_name",
type=str,
default="Setting_9_epoch_100",
help="choose which checkpoint",
)
self.opts = parser.parse_args("")
self.basepath = os.getcwd()
self.opts.input_folder = os.path.join(self.basepath, self.opts.input_folder)
self.opts.output_folder = os.path.join(self.basepath, self.opts.output_folder)
os.makedirs(self.opts.input_folder, exist_ok=True)
os.makedirs(self.opts.output_folder, exist_ok=True)
@cog.input("image", type=Path, help="input image")
@cog.input(
"HR",
type=bool,
default=False,
help="whether the input image is high-resolution",
)
@cog.input(
"with_scratch",
type=bool,
default=False,
help="whether the input image is scratched",
)
def predict(self, image, HR=False, with_scratch=False):
try:
os.chdir(self.basepath)
input_path = os.path.join(self.opts.input_folder, os.path.basename(image))
shutil.copy(str(image), input_path)
gpu1 = self.opts.GPU
## Stage 1: Overall Quality Improve
print("Running Stage 1: Overall restoration")
os.chdir("./Global")
stage_1_input_dir = self.opts.input_folder
stage_1_output_dir = os.path.join(
self.opts.output_folder, "stage_1_restore_output"
)
os.makedirs(stage_1_output_dir, exist_ok=True)
if not with_scratch:
stage_1_command = (
"python test.py --test_mode Full --Quality_restore --test_input "
+ stage_1_input_dir
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1
)
run_cmd(stage_1_command)
else:
mask_dir = os.path.join(stage_1_output_dir, "masks")
new_input = os.path.join(mask_dir, "input")
new_mask = os.path.join(mask_dir, "mask")
stage_1_command_1 = (
"python detection.py --test_path "
+ stage_1_input_dir
+ " --output_dir "
+ mask_dir
+ " --input_size full_size"
+ " --GPU "
+ gpu1
)
if HR:
HR_suffix = " --HR"
else:
HR_suffix = ""
stage_1_command_2 = (
"python test.py --Scratch_and_Quality_restore --test_input "
+ new_input
+ " --test_mask "
+ new_mask
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1
+ HR_suffix
)
run_cmd(stage_1_command_1)
run_cmd(stage_1_command_2)
## Solve the case when there is no face in the old photo
stage_1_results = os.path.join(stage_1_output_dir, "restored_image")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)
for x in os.listdir(stage_1_results):
img_dir = os.path.join(stage_1_results, x)
shutil.copy(img_dir, stage_4_output_dir)
print("Finish Stage 1 ...")
print("\n")
## Stage 2: Face Detection
print("Running Stage 2: Face Detection")
os.chdir(".././Face_Detection")
stage_2_input_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_2_output_dir = os.path.join(
self.opts.output_folder, "stage_2_detection_output"
)
os.makedirs(stage_2_output_dir, exist_ok=True)
stage_2_command = (
"python detect_all_dlib_HR.py --url "
+ stage_2_input_dir
+ " --save_url "
+ stage_2_output_dir
)
run_cmd(stage_2_command)
print("Finish Stage 2 ...")
print("\n")
## Stage 3: Face Restore
print("Running Stage 3: Face Enhancement")
os.chdir(".././Face_Enhancement")
stage_3_input_mask = "./"
stage_3_input_face = stage_2_output_dir
stage_3_output_dir = os.path.join(
self.opts.output_folder, "stage_3_face_output"
)
os.makedirs(stage_3_output_dir, exist_ok=True)
self.opts.checkpoint_name = "FaceSR_512"
stage_3_command = (
"python test_face.py --old_face_folder "
+ stage_3_input_face
+ " --old_face_label_folder "
+ stage_3_input_mask
+ " --tensorboard_log --name "
+ self.opts.checkpoint_name
+ " --gpu_ids "
+ gpu1
+ " --load_size 512 --label_nc 18 --no_instance --preprocess_mode resize --batchSize 1 --results_dir "
+ stage_3_output_dir
+ " --no_parsing_map"
)
run_cmd(stage_3_command)
print("Finish Stage 3 ...")
print("\n")
## Stage 4: Warp back
print("Running Stage 4: Blending")
os.chdir(".././Face_Detection")
stage_4_input_image_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_4_input_face_dir = os.path.join(stage_3_output_dir, "each_img")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)
stage_4_command = (
"python align_warp_back_multiple_dlib_HR.py --origin_url "
+ stage_4_input_image_dir
+ " --replace_url "
+ stage_4_input_face_dir
+ " --save_url "
+ stage_4_output_dir
)
run_cmd(stage_4_command)
print("Finish Stage 4 ...")
print("\n")
print("All the processing is done. Please check the results.")
final_output = os.listdir(os.path.join(self.opts.output_folder, "final_output"))[0]
image_restore = cv2.imread(os.path.join(self.opts.output_folder, "final_output", final_output))
out_path = Path(tempfile.mkdtemp()) / "out.png"
cv2.imwrite(str(out_path), image_restore)
finally:
clean_folder(self.opts.input_folder)
clean_folder(self.opts.output_folder)
return out_path
def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason:{e}")
|