File size: 8,086 Bytes
e78c13e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import tempfile
from pathlib import Path
import argparse
import shutil
import os
import glob
import cv2
import cog
from run import run_cmd


class Predictor(cog.Predictor):
    def setup(self):
        parser = argparse.ArgumentParser()
        parser.add_argument(
            "--input_folder", type=str, default="input/cog_temp", help="Test images"
        )
        parser.add_argument(
            "--output_folder",
            type=str,
            default="output",
            help="Restored images, please use the absolute path",
        )
        parser.add_argument("--GPU", type=str, default="0", help="0,1,2")
        parser.add_argument(
            "--checkpoint_name",
            type=str,
            default="Setting_9_epoch_100",
            help="choose which checkpoint",
        )
        self.opts = parser.parse_args("")
        self.basepath = os.getcwd()
        self.opts.input_folder = os.path.join(self.basepath, self.opts.input_folder)
        self.opts.output_folder = os.path.join(self.basepath, self.opts.output_folder)
        os.makedirs(self.opts.input_folder, exist_ok=True)
        os.makedirs(self.opts.output_folder, exist_ok=True)

    @cog.input("image", type=Path, help="input image")
    @cog.input(
        "HR",
        type=bool,
        default=False,
        help="whether the input image is high-resolution",
    )
    @cog.input(
        "with_scratch",
        type=bool,
        default=False,
        help="whether the input image is scratched",
    )
    def predict(self, image, HR=False, with_scratch=False):
        try:
            os.chdir(self.basepath)
            input_path = os.path.join(self.opts.input_folder, os.path.basename(image))
            shutil.copy(str(image), input_path)

            gpu1 = self.opts.GPU

            ## Stage 1: Overall Quality Improve
            print("Running Stage 1: Overall restoration")
            os.chdir("./Global")
            stage_1_input_dir = self.opts.input_folder
            stage_1_output_dir = os.path.join(
                self.opts.output_folder, "stage_1_restore_output"
            )

            os.makedirs(stage_1_output_dir, exist_ok=True)

            if not with_scratch:

                stage_1_command = (
                        "python test.py --test_mode Full --Quality_restore --test_input "
                        + stage_1_input_dir
                        + " --outputs_dir "
                        + stage_1_output_dir
                        + " --gpu_ids "
                        + gpu1
                )
                run_cmd(stage_1_command)
            else:

                mask_dir = os.path.join(stage_1_output_dir, "masks")
                new_input = os.path.join(mask_dir, "input")
                new_mask = os.path.join(mask_dir, "mask")
                stage_1_command_1 = (
                        "python detection.py --test_path "
                        + stage_1_input_dir
                        + " --output_dir "
                        + mask_dir
                        + " --input_size full_size"
                        + " --GPU "
                        + gpu1
                )

                if HR:
                    HR_suffix = " --HR"
                else:
                    HR_suffix = ""

                stage_1_command_2 = (
                        "python test.py --Scratch_and_Quality_restore --test_input "
                        + new_input
                        + " --test_mask "
                        + new_mask
                        + " --outputs_dir "
                        + stage_1_output_dir
                        + " --gpu_ids "
                        + gpu1
                        + HR_suffix
                )

                run_cmd(stage_1_command_1)
                run_cmd(stage_1_command_2)

            ## Solve the case when there is no face in the old photo
            stage_1_results = os.path.join(stage_1_output_dir, "restored_image")
            stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
            os.makedirs(stage_4_output_dir, exist_ok=True)
            for x in os.listdir(stage_1_results):
                img_dir = os.path.join(stage_1_results, x)
                shutil.copy(img_dir, stage_4_output_dir)

            print("Finish Stage 1 ...")
            print("\n")

            ## Stage 2: Face Detection

            print("Running Stage 2: Face Detection")
            os.chdir(".././Face_Detection")
            stage_2_input_dir = os.path.join(stage_1_output_dir, "restored_image")
            stage_2_output_dir = os.path.join(
                self.opts.output_folder, "stage_2_detection_output"
            )
            os.makedirs(stage_2_output_dir, exist_ok=True)

            stage_2_command = (
                    "python detect_all_dlib_HR.py --url "
                    + stage_2_input_dir
                    + " --save_url "
                    + stage_2_output_dir
            )

            run_cmd(stage_2_command)
            print("Finish Stage 2 ...")
            print("\n")

            ## Stage 3: Face Restore
            print("Running Stage 3: Face Enhancement")
            os.chdir(".././Face_Enhancement")
            stage_3_input_mask = "./"
            stage_3_input_face = stage_2_output_dir
            stage_3_output_dir = os.path.join(
                self.opts.output_folder, "stage_3_face_output"
            )

            os.makedirs(stage_3_output_dir, exist_ok=True)

            self.opts.checkpoint_name = "FaceSR_512"
            stage_3_command = (
                    "python test_face.py --old_face_folder "
                    + stage_3_input_face
                    + " --old_face_label_folder "
                    + stage_3_input_mask
                    + " --tensorboard_log --name "
                    + self.opts.checkpoint_name
                    + " --gpu_ids "
                    + gpu1
                    + " --load_size 512 --label_nc 18 --no_instance --preprocess_mode resize --batchSize 1 --results_dir "
                    + stage_3_output_dir
                    + " --no_parsing_map"
            )

            run_cmd(stage_3_command)
            print("Finish Stage 3 ...")
            print("\n")

            ## Stage 4: Warp back
            print("Running Stage 4: Blending")
            os.chdir(".././Face_Detection")
            stage_4_input_image_dir = os.path.join(stage_1_output_dir, "restored_image")
            stage_4_input_face_dir = os.path.join(stage_3_output_dir, "each_img")
            stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
            os.makedirs(stage_4_output_dir, exist_ok=True)

            stage_4_command = (
                    "python align_warp_back_multiple_dlib_HR.py --origin_url "
                    + stage_4_input_image_dir
                    + " --replace_url "
                    + stage_4_input_face_dir
                    + " --save_url "
                    + stage_4_output_dir
            )

            run_cmd(stage_4_command)
            print("Finish Stage 4 ...")
            print("\n")

            print("All the processing is done. Please check the results.")

            final_output = os.listdir(os.path.join(self.opts.output_folder, "final_output"))[0]

            image_restore = cv2.imread(os.path.join(self.opts.output_folder, "final_output", final_output))

            out_path = Path(tempfile.mkdtemp()) / "out.png"

            cv2.imwrite(str(out_path), image_restore)
        finally:
            clean_folder(self.opts.input_folder)
            clean_folder(self.opts.output_folder)
        return out_path


def clean_folder(folder):
    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            print(f"Failed to delete {file_path}. Reason:{e}")