from llama_index.core import ( VectorStoreIndex ) from llama_index.core import Settings from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient from typing import Any, List, Tuple import torch from transformers import AutoTokenizer, AutoModelForMaskedLM import streamlit as st from llama_index.llms.huggingface import ( HuggingFaceInferenceAPI ) import os HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") Q_END_POINT = os.environ.get("Q_END_POINT") Q_API_KEY = os.environ.get("Q_API_KEY") #DOC #https://docs.llamaindex.ai/en/stable/examples/vector_stores/qdrant_hybrid.html doc_tokenizer = AutoTokenizer.from_pretrained( "naver/efficient-splade-VI-BT-large-doc" ) doc_model = AutoModelForMaskedLM.from_pretrained( "naver/efficient-splade-VI-BT-large-doc" ) query_tokenizer = AutoTokenizer.from_pretrained( "naver/efficient-splade-VI-BT-large-query" ) query_model = AutoModelForMaskedLM.from_pretrained( "naver/efficient-splade-VI-BT-large-query" ) device = "cuda:0" if torch.cuda.is_available() else "cpu" doc_model = doc_model.to(device) query_model = query_model.to(device) def sparse_doc_vectors( texts: List[str], ) -> Tuple[List[List[int]], List[List[float]]]: """ Computes vectors from logits and attention mask using ReLU, log, and max operations. """ tokens = doc_tokenizer( texts, truncation=True, padding=True, return_tensors="pt" ) if torch.cuda.is_available(): tokens = tokens.to("cuda:1") output = doc_model(**tokens) logits, attention_mask = output.logits, tokens.attention_mask relu_log = torch.log(1 + torch.relu(logits)) weighted_log = relu_log * attention_mask.unsqueeze(-1) tvecs, _ = torch.max(weighted_log, dim=1) # extract the vectors that are non-zero and their indices indices = [] vecs = [] for batch in tvecs: indices.append(batch.nonzero(as_tuple=True)[0].tolist()) vecs.append(batch[indices[-1]].tolist()) return indices, vecs def sparse_query_vectors( texts: List[str], ) -> Tuple[List[List[int]], List[List[float]]]: """ Computes vectors from logits and attention mask using ReLU, log, and max operations. """ # TODO: compute sparse vectors in batches if max length is exceeded tokens = query_tokenizer( texts, truncation=True, padding=True, return_tensors="pt" ) if torch.cuda.is_available(): tokens = tokens.to("cuda:1") output = query_model(**tokens) logits, attention_mask = output.logits, tokens.attention_mask relu_log = torch.log(1 + torch.relu(logits)) weighted_log = relu_log * attention_mask.unsqueeze(-1) tvecs, _ = torch.max(weighted_log, dim=1) # extract the vectors that are non-zero and their indices indices = [] vecs = [] for batch in tvecs: indices.append(batch.nonzero(as_tuple=True)[0].tolist()) vecs.append(batch[indices[-1]].tolist()) return indices, vecs st.header("Chat with the Bhagavad Gita docs 💬 📚"") if "messages" not in st.session_state.keys(): # Initialize the chat message history st.session_state.messages = [ {"role": "assistant", "content": "Ask me a question about Gita!"} ] # creates a persistant index to disk client = QdrantClient( Q_END_POINT, api_key=Q_API_KEY, ) # create our vector store with hybrid indexing enabled # batch_size controls how many nodes are encoded with sparse vectors at once vector_store = QdrantVectorStore( "bhagavad_gita", client=client, enable_hybrid=True, batch_size=20,force_disable_check_same_thread=True, sparse_doc_fn=sparse_doc_vectors, sparse_query_fn=sparse_query_vectors, ) llm = HuggingFaceInferenceAPI( model_name="mistralai/Mistral-7B-Instruct-v0.2", token=HUGGINGFACEHUB_API_TOKEN, context_window=8096, ) Settings.llm = llm Settings.tokenzier = AutoTokenizer.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.2" ) embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5", device="cpu") Settings.embed_model = embed_model index = VectorStoreIndex.from_vector_store(vector_store=vector_store,embed_model=embed_model) from llama_index.core.memory import ChatMemoryBuffer memory = ChatMemoryBuffer.from_defaults(token_limit=1500) chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True, memory=memory, sparse_top_k=10, vector_store_query_mode="hybrid", similarity_top_k=3, ) if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history st.session_state.messages.append({"role": "user", "content": prompt}) for message in st.session_state.messages: # Display the prior chat messages with st.chat_message(message["role"]): st.write(message["content"]) # If last message is not from assistant, generate a new response if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = chat_engine.chat(prompt) st.write(response.response) message = {"role": "assistant", "content": response.response} st.session_state.messages.append(message) # Add response to message history