Spaces:
Running
Running
Germano Cavalcante
commited on
Commit
·
ed15883
1
Parent(s):
5def575
New tool Wiki Search
Browse filesSearches the manual or any other embed information in order to find a
context for the information.
- main.py +4 -1
- routers/embedding/__init__.py +114 -0
- routers/{tool_find_related_cache.pkl → embedding/embeddings_issues.pkl} +2 -2
- routers/embedding/embeddings_manual.pkl +3 -0
- routers/tool_calls.py +4 -0
- routers/tool_find_related.py +143 -262
- routers/tool_wiki_search.py +295 -0
- utils/generate_blender_doc.py +0 -194
main.py
CHANGED
@@ -6,7 +6,7 @@ from fastapi.responses import HTMLResponse
|
|
6 |
from fastapi.staticfiles import StaticFiles
|
7 |
from huggingface_hub import login
|
8 |
from config import settings
|
9 |
-
from routers import tool_bpy_doc, tool_gpu_checker, tool_calls, tool_find_related
|
10 |
|
11 |
login(settings.huggingface_key)
|
12 |
|
@@ -30,6 +30,9 @@ app.include_router(
|
|
30 |
app.include_router(
|
31 |
tool_find_related.router, prefix="/api/v1", tags=["Tools"])
|
32 |
|
|
|
|
|
|
|
33 |
app.include_router(
|
34 |
tool_calls.router, prefix="/api/v1", tags=["Function Calls"])
|
35 |
|
|
|
6 |
from fastapi.staticfiles import StaticFiles
|
7 |
from huggingface_hub import login
|
8 |
from config import settings
|
9 |
+
from routers import tool_bpy_doc, tool_gpu_checker, tool_calls, tool_find_related, tool_wiki_search
|
10 |
|
11 |
login(settings.huggingface_key)
|
12 |
|
|
|
30 |
app.include_router(
|
31 |
tool_find_related.router, prefix="/api/v1", tags=["Tools"])
|
32 |
|
33 |
+
app.include_router(
|
34 |
+
tool_wiki_search.router, prefix="/api/v1", tags=["Tools"])
|
35 |
+
|
36 |
app.include_router(
|
37 |
tool_calls.router, prefix="/api/v1", tags=["Function Calls"])
|
38 |
|
routers/embedding/__init__.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# routers/embedding/__init__.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import threading
|
6 |
+
import torch
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
|
9 |
+
|
10 |
+
class EmbeddingContext:
|
11 |
+
# These don't change
|
12 |
+
TOKEN_LEN_MAX_FOR_EMBEDDING = 512
|
13 |
+
|
14 |
+
# Set when creating the object
|
15 |
+
lock = None
|
16 |
+
model = None
|
17 |
+
openai_client = None
|
18 |
+
model_name = ''
|
19 |
+
config_type = ''
|
20 |
+
embedding_shape = None
|
21 |
+
embedding_dtype = None
|
22 |
+
embedding_device = None
|
23 |
+
|
24 |
+
# Updates constantly
|
25 |
+
data = {}
|
26 |
+
|
27 |
+
def __init__(self):
|
28 |
+
try:
|
29 |
+
from config import settings
|
30 |
+
except:
|
31 |
+
sys.path.append(os.path.abspath(
|
32 |
+
os.path.join(os.path.dirname(__file__), '../..')))
|
33 |
+
from config import settings
|
34 |
+
|
35 |
+
self.lock = threading.Lock()
|
36 |
+
config_type = settings.embedding_api
|
37 |
+
model_name = settings.embedding_model
|
38 |
+
|
39 |
+
if config_type == 'sbert':
|
40 |
+
self.model = SentenceTransformer(model_name, use_auth_token=False)
|
41 |
+
self.model.max_seq_length = self.TOKEN_LEN_MAX_FOR_EMBEDDING
|
42 |
+
print("Max Sequence Length:", self.model.max_seq_length)
|
43 |
+
|
44 |
+
self.encode = self.encode_sbert
|
45 |
+
if torch.cuda.is_available():
|
46 |
+
self.model = self.model.to('cuda')
|
47 |
+
|
48 |
+
elif config_type == 'openai':
|
49 |
+
from openai import OpenAI
|
50 |
+
self.openai_client = OpenAI(
|
51 |
+
# base_url = settings.openai_api_base
|
52 |
+
api_key=settings.OPENAI_API_KEY,
|
53 |
+
)
|
54 |
+
self.encode = self.encode_openai
|
55 |
+
|
56 |
+
self.model_name = model_name
|
57 |
+
self.config_type = config_type
|
58 |
+
|
59 |
+
tmp = self.encode(['tmp'])
|
60 |
+
self.embedding_shape = tmp.shape[1:]
|
61 |
+
self.embedding_dtype = tmp.dtype
|
62 |
+
self.embedding_device = tmp.device
|
63 |
+
|
64 |
+
def encode(self, texts_to_embed):
|
65 |
+
pass
|
66 |
+
|
67 |
+
def encode_sbert(self, texts_to_embed):
|
68 |
+
return self.model.encode(texts_to_embed, show_progress_bar=True, convert_to_tensor=True, normalize_embeddings=True)
|
69 |
+
|
70 |
+
def encode_openai(self, texts_to_embed):
|
71 |
+
import math
|
72 |
+
import time
|
73 |
+
|
74 |
+
tokens_count = 0
|
75 |
+
for text in texts_to_embed:
|
76 |
+
tokens_count += len(self.get_tokens(text))
|
77 |
+
|
78 |
+
chunks_num = math.ceil(tokens_count / 500000)
|
79 |
+
chunk_size = math.ceil(len(texts_to_embed) / chunks_num)
|
80 |
+
|
81 |
+
embeddings = []
|
82 |
+
for i in range(chunks_num):
|
83 |
+
start = i * chunk_size
|
84 |
+
end = start + chunk_size
|
85 |
+
chunk = texts_to_embed[start:end]
|
86 |
+
|
87 |
+
embeddings_tmp = self.openai_client.embeddings.create(
|
88 |
+
model=self.model_name,
|
89 |
+
input=chunk,
|
90 |
+
).data
|
91 |
+
|
92 |
+
if embeddings_tmp is None:
|
93 |
+
break
|
94 |
+
|
95 |
+
embeddings.extend(embeddings_tmp)
|
96 |
+
|
97 |
+
if i < chunks_num - 1:
|
98 |
+
time.sleep(60) # Wait 1 minute before the next call
|
99 |
+
|
100 |
+
return torch.stack([torch.tensor(embedding.embedding, dtype=torch.float32) for embedding in embeddings])
|
101 |
+
|
102 |
+
def get_tokens(self, text):
|
103 |
+
if self.model:
|
104 |
+
return self.model.tokenizer.tokenize(text)
|
105 |
+
|
106 |
+
tokens = []
|
107 |
+
for token in re.split(r'(\W|\b)', text):
|
108 |
+
if token.strip():
|
109 |
+
tokens.append(token)
|
110 |
+
|
111 |
+
return tokens
|
112 |
+
|
113 |
+
|
114 |
+
EMBEDDING_CTX = EmbeddingContext()
|
routers/{tool_find_related_cache.pkl → embedding/embeddings_issues.pkl}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c3c012a8f86440dacedd6f1e4e9ea9f41f096031c0ac1ed5cdf64a9a8d46e42
|
3 |
+
size 723452942
|
routers/embedding/embeddings_manual.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ed7475fc8ffda0d9e9deb6480b7152b53657f0fe6a6140bcb60360e425e7a01
|
3 |
+
size 18659241
|
routers/tool_calls.py
CHANGED
@@ -8,10 +8,12 @@ try:
|
|
8 |
from .tool_gpu_checker import gpu_checker_get_message
|
9 |
from .tool_bpy_doc import bpy_doc_get_documentation
|
10 |
from .tool_find_related import find_relatedness
|
|
|
11 |
except:
|
12 |
from tool_gpu_checker import gpu_checker_get_message
|
13 |
from tool_bpy_doc import bpy_doc_get_documentation
|
14 |
from tool_find_related import find_relatedness
|
|
|
15 |
|
16 |
|
17 |
class ToolCallFunction(BaseModel):
|
@@ -43,6 +45,8 @@ def process_tool_call(tool_call: ToolCallInput) -> Dict:
|
|
43 |
elif function_name == "find_related":
|
44 |
output["output"] = find_relatedness(
|
45 |
function_args["repo"], function_args["number"])
|
|
|
|
|
46 |
except json.JSONDecodeError as e:
|
47 |
error_message = f"Malformed JSON encountered at position {e.pos}: {e.msg}\n {tool_call.function.arguments}"
|
48 |
output["output"] = error_message
|
|
|
8 |
from .tool_gpu_checker import gpu_checker_get_message
|
9 |
from .tool_bpy_doc import bpy_doc_get_documentation
|
10 |
from .tool_find_related import find_relatedness
|
11 |
+
from .tool_wiki_search import wiki_search
|
12 |
except:
|
13 |
from tool_gpu_checker import gpu_checker_get_message
|
14 |
from tool_bpy_doc import bpy_doc_get_documentation
|
15 |
from tool_find_related import find_relatedness
|
16 |
+
from .tool_wiki_search import wiki_search
|
17 |
|
18 |
|
19 |
class ToolCallFunction(BaseModel):
|
|
|
45 |
elif function_name == "find_related":
|
46 |
output["output"] = find_relatedness(
|
47 |
function_args["repo"], function_args["number"])
|
48 |
+
elif function_name == "wiki_search":
|
49 |
+
output["output"] = wiki_search(function_args["query"])
|
50 |
except json.JSONDecodeError as e:
|
51 |
error_message = f"Malformed JSON encountered at position {e.pos}: {e.msg}\n {tool_call.function.arguments}"
|
52 |
output["output"] = error_message
|
routers/tool_find_related.py
CHANGED
@@ -1,22 +1,39 @@
|
|
1 |
-
# find_related.py
|
2 |
|
3 |
import os
|
4 |
import pickle
|
5 |
-
import re
|
6 |
import torch
|
7 |
-
import
|
8 |
|
|
|
9 |
from datetime import datetime, timedelta
|
10 |
from enum import Enum
|
11 |
-
from sentence_transformers import
|
12 |
from fastapi import APIRouter
|
13 |
|
14 |
try:
|
|
|
15 |
from .utils_gitea import gitea_fetch_issues, gitea_json_issue_get, gitea_issues_body_updated_at_get
|
16 |
except:
|
|
|
17 |
from utils_gitea import gitea_fetch_issues, gitea_json_issue_get, gitea_issues_body_updated_at_get
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def _create_issue_string(title, body):
|
21 |
cleaned_body = body.replace('\r', '')
|
22 |
cleaned_body = cleaned_body.replace('**System Information**\n', '')
|
@@ -51,283 +68,149 @@ def _find_latest_date(issues, default_str=None):
|
|
51 |
return max((issue['updated_at'] for issue in issues), default=default_str)
|
52 |
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
TOKEN_LEN_MAX_BALCKLIST = 2 * TOKEN_LEN_MAX_FOR_EMBEDDING
|
58 |
-
ARRAY_CHUNK_SIZE = 4096
|
59 |
-
issue_attr_filter = {'number', 'title', 'body',
|
60 |
-
'state', 'updated_at', 'created_at'}
|
61 |
-
cache_path = "routers/tool_find_related_cache.pkl"
|
62 |
-
|
63 |
-
# Set when creating the object
|
64 |
-
lock = None
|
65 |
-
model = None
|
66 |
-
openai_client = None
|
67 |
-
model_name = ''
|
68 |
-
config_type = ''
|
69 |
-
embedding_shape = None
|
70 |
-
embedding_dtype = None
|
71 |
-
embedding_device = None
|
72 |
-
|
73 |
-
# Updates constantly
|
74 |
-
data = {}
|
75 |
-
black_list = {'blender': {109399, 113157, 114706},
|
76 |
-
'blender-addons': set()}
|
77 |
-
|
78 |
-
def __init__(self):
|
79 |
-
self.lock = threading.Lock()
|
80 |
-
|
81 |
-
try:
|
82 |
-
from config import settings
|
83 |
-
except:
|
84 |
-
import sys
|
85 |
-
sys.path.append(os.path.abspath(
|
86 |
-
os.path.join(os.path.dirname(__file__), '..')))
|
87 |
-
from config import settings
|
88 |
-
|
89 |
-
config_type = settings.embedding_api
|
90 |
-
model_name = settings.embedding_model
|
91 |
-
|
92 |
-
if config_type == 'sbert':
|
93 |
-
self.model = SentenceTransformer(model_name, use_auth_token=False)
|
94 |
-
self.model.max_seq_length = self.TOKEN_LEN_MAX_FOR_EMBEDDING
|
95 |
-
print("Max Sequence Length:", self.model.max_seq_length)
|
96 |
-
|
97 |
-
self.encode = self.encode_sbert
|
98 |
-
if torch.cuda.is_available():
|
99 |
-
self.model = self.model.to('cuda')
|
100 |
-
|
101 |
-
elif config_type == 'openai':
|
102 |
-
from openai import OpenAI
|
103 |
-
self.openai_client = OpenAI(
|
104 |
-
# base_url = settings.openai_api_base
|
105 |
-
api_key=settings.OPENAI_API_KEY,
|
106 |
-
)
|
107 |
-
self.encode = self.encode_openai
|
108 |
-
|
109 |
-
self.model_name = model_name
|
110 |
-
self.config_type = config_type
|
111 |
-
|
112 |
-
tmp = self.encode(['tmp'])
|
113 |
-
self.embedding_shape = tmp.shape[1:]
|
114 |
-
self.embedding_dtype = tmp.dtype
|
115 |
-
self.embedding_device = tmp.device
|
116 |
-
|
117 |
-
def encode(self, texts_to_embed):
|
118 |
-
pass
|
119 |
|
120 |
-
|
121 |
-
return self.model.encode(texts_to_embed, show_progress_bar=True, convert_to_tensor=True, normalize_embeddings=True)
|
122 |
|
123 |
-
def encode_openai(self, texts_to_embed):
|
124 |
-
import math
|
125 |
-
import time
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
tokens_count += len(self.get_tokens(text))
|
130 |
|
131 |
-
|
132 |
-
chunk_size = math.ceil(len(texts_to_embed) / chunks_num)
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
break
|
147 |
|
148 |
-
embeddings.extend(embeddings_tmp)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
return self.model.tokenizer.tokenize(text)
|
158 |
|
159 |
-
|
160 |
-
for token in re.split(r'(\W|\b)', text):
|
161 |
-
if token.strip():
|
162 |
-
tokens.append(token)
|
163 |
|
164 |
-
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
issue['title'], issue['body']) for issue in issues]
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
tokens_len = len(tokens)
|
175 |
-
token_count += tokens_len
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
183 |
|
184 |
-
return texts_to_embed
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
arrays_size_old = 0
|
189 |
-
titles_old = []
|
190 |
-
try:
|
191 |
-
arrays_size_old = self.data[repo]['arrays_size']
|
192 |
-
if size_new <= arrays_size_old:
|
193 |
-
return
|
194 |
-
except:
|
195 |
-
pass
|
196 |
-
|
197 |
-
arrays_size_new = self.ARRAY_CHUNK_SIZE * \
|
198 |
-
(int(size_new / self.ARRAY_CHUNK_SIZE) + 1)
|
199 |
-
|
200 |
-
data_new = {
|
201 |
-
'updated_at': updated_at_old,
|
202 |
-
'arrays_size': arrays_size_new,
|
203 |
-
'titles': titles_old + [None] * (arrays_size_new - arrays_size_old),
|
204 |
-
'embeddings': torch.empty((arrays_size_new, *self.embedding_shape),
|
205 |
-
dtype=self.embedding_dtype,
|
206 |
-
device=self.embedding_device),
|
207 |
-
'opened': torch.zeros(arrays_size_new, dtype=torch.bool),
|
208 |
-
'closed': torch.zeros(arrays_size_new, dtype=torch.bool),
|
209 |
-
}
|
210 |
|
|
|
211 |
try:
|
212 |
-
|
213 |
-
data_new['opened'][:arrays_size_old] = self.data[repo]['opened']
|
214 |
-
data_new['closed'][:arrays_size_old] = self.data[repo]['closed']
|
215 |
except:
|
216 |
-
|
217 |
-
|
218 |
-
self.data[repo] = data_new
|
219 |
|
220 |
-
|
221 |
-
if os.path.exists(self.cache_path):
|
222 |
-
with open(self.cache_path, 'rb') as file:
|
223 |
-
self.data = pickle.load(file)
|
224 |
-
if repo in self.data:
|
225 |
-
return
|
226 |
|
227 |
-
|
228 |
-
|
229 |
|
230 |
-
|
|
|
231 |
|
232 |
-
|
233 |
-
|
|
|
234 |
|
235 |
-
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
|
241 |
-
|
242 |
-
self.data[repo]['updated_at'] = _find_latest_date(issues)
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
opened = self.data[repo]['opened']
|
247 |
-
closed = self.data[repo]['closed']
|
248 |
|
249 |
for i, issue in enumerate(issues):
|
250 |
number = int(issue['number'])
|
251 |
-
titles[number] = issue['title']
|
252 |
-
embeddings_new[number] = embeddings[i]
|
253 |
if issue['state'] == 'open':
|
254 |
-
opened[number] = True
|
255 |
if issue['state'] == 'closed':
|
256 |
-
closed[number] = True
|
257 |
-
|
258 |
-
def embeddings_updated_get(self, repo):
|
259 |
-
with self.lock:
|
260 |
-
try:
|
261 |
-
data = self.data[repo]
|
262 |
-
except:
|
263 |
-
self.embeddings_generate(repo)
|
264 |
-
data = self.data[repo]
|
265 |
-
|
266 |
-
black_list = self.black_list[repo]
|
267 |
-
date_old = data['updated_at']
|
268 |
-
|
269 |
-
issues = gitea_fetch_issues(
|
270 |
-
'blender', repo, since=date_old, issue_attr_filter=self.issue_attr_filter, exclude=black_list)
|
271 |
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
# autopep8: off
|
282 |
-
# Consider that if the time hasn't changed, it's the same issue.
|
283 |
-
issues = [issue for issue in issues if issue['updated_at'] != date_old]
|
284 |
-
|
285 |
-
self.data_ensure_size(repo, int(issues[0]['number']))
|
286 |
-
|
287 |
-
updated_at = gitea_issues_body_updated_at_get(issues)
|
288 |
-
issues_to_embed = []
|
289 |
-
|
290 |
-
for i, issue in enumerate(issues):
|
291 |
number = int(issue['number'])
|
292 |
-
|
293 |
-
data['opened'][number] = True
|
294 |
-
if issue['state'] == 'closed':
|
295 |
-
data['closed'][number] = True
|
296 |
-
|
297 |
-
title_old = data['titles'][number]
|
298 |
-
if title_old != issue['title']:
|
299 |
-
data['titles'][number] = issue['title']
|
300 |
-
issues_to_embed.append(issue)
|
301 |
-
elif updated_at[i] >= date_old:
|
302 |
-
issues_to_embed.append(issue)
|
303 |
-
|
304 |
-
if issues_to_embed:
|
305 |
-
texts_to_embed = self.create_strings_to_embbed(issues_to_embed, black_list)
|
306 |
-
embeddings = self.encode(texts_to_embed)
|
307 |
-
|
308 |
-
for i, issue in enumerate(issues_to_embed):
|
309 |
-
number = int(issue['number'])
|
310 |
-
data['embeddings'][number] = embeddings[i]
|
311 |
|
312 |
# autopep8: on
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
router = APIRouter()
|
317 |
-
EMBEDDING_CTX = EmbeddingContext()
|
318 |
-
# EMBEDDING_CTX.embeddings_generate('blender', 'blender')
|
319 |
-
# EMBEDDING_CTX.embeddings_generate('blender', 'blender-addons')
|
320 |
-
|
321 |
-
|
322 |
-
# Define your Enum class
|
323 |
-
class State(str, Enum):
|
324 |
-
opened = "opened"
|
325 |
-
closed = "closed"
|
326 |
-
all = "all"
|
327 |
|
328 |
|
329 |
def _sort_similarity(data: dict,
|
330 |
-
query_emb: torch.Tensor,
|
331 |
limit: int,
|
332 |
state: State = State.opened) -> list:
|
333 |
duplicates = []
|
@@ -356,7 +239,7 @@ def _sort_similarity(data: dict,
|
|
356 |
|
357 |
|
358 |
def find_relatedness(repo: str, number: int, limit: int = 20, state: State = State.opened):
|
359 |
-
data =
|
360 |
|
361 |
# Check if the embedding already exists.
|
362 |
if data['titles'][number] is not None:
|
@@ -383,7 +266,7 @@ def find_relatedness(repo: str, number: int, limit: int = 20, state: State = Sta
|
|
383 |
|
384 |
|
385 |
@router.get("/find_related/{repo}/{number}")
|
386 |
-
def find_related(repo: str = 'blender', number: int = 104399, limit: int = 15, state: State = State.opened):
|
387 |
related = find_relatedness(repo, number, limit=limit, state=state)
|
388 |
return related
|
389 |
|
@@ -391,28 +274,26 @@ def find_related(repo: str = 'blender', number: int = 104399, limit: int = 15, s
|
|
391 |
if __name__ == "__main__":
|
392 |
update_cache = True
|
393 |
if update_cache:
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
with open(cache_path, "wb") as file:
|
398 |
# Converting the embeddings to be CPU compatible, as the virtual machine in use currently only supports the CPU.
|
399 |
-
for val in
|
400 |
val['embeddings'] = val['embeddings'].to(torch.device('cpu'))
|
401 |
|
402 |
-
pickle.dump(
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
print(related2)
|
|
|
1 |
+
# routers/find_related.py
|
2 |
|
3 |
import os
|
4 |
import pickle
|
|
|
5 |
import torch
|
6 |
+
import re
|
7 |
|
8 |
+
from typing import List
|
9 |
from datetime import datetime, timedelta
|
10 |
from enum import Enum
|
11 |
+
from sentence_transformers import util
|
12 |
from fastapi import APIRouter
|
13 |
|
14 |
try:
|
15 |
+
from .embedding import EMBEDDING_CTX
|
16 |
from .utils_gitea import gitea_fetch_issues, gitea_json_issue_get, gitea_issues_body_updated_at_get
|
17 |
except:
|
18 |
+
from embedding import EMBEDDING_CTX
|
19 |
from utils_gitea import gitea_fetch_issues, gitea_json_issue_get, gitea_issues_body_updated_at_get
|
20 |
|
21 |
|
22 |
+
router = APIRouter()
|
23 |
+
|
24 |
+
issue_attr_filter = {'number', 'title', 'body',
|
25 |
+
'state', 'updated_at', 'created_at'}
|
26 |
+
|
27 |
+
G_cache_path = "routers/embedding/embeddings_issues.pkl"
|
28 |
+
G_data = {}
|
29 |
+
|
30 |
+
|
31 |
+
class State(str, Enum):
|
32 |
+
opened = "opened"
|
33 |
+
closed = "closed"
|
34 |
+
all = "all"
|
35 |
+
|
36 |
+
|
37 |
def _create_issue_string(title, body):
|
38 |
cleaned_body = body.replace('\r', '')
|
39 |
cleaned_body = cleaned_body.replace('**System Information**\n', '')
|
|
|
68 |
return max((issue['updated_at'] for issue in issues), default=default_str)
|
69 |
|
70 |
|
71 |
+
def _create_strings_to_embbed(issues):
|
72 |
+
texts_to_embed = [_create_issue_string(
|
73 |
+
issue['title'], issue['body']) for issue in issues]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
return texts_to_embed
|
|
|
76 |
|
|
|
|
|
|
|
77 |
|
78 |
+
def _data_ensure_size(repo, size_new):
|
79 |
+
global G_data
|
|
|
80 |
|
81 |
+
ARRAY_CHUNK_SIZE = 4096
|
|
|
82 |
|
83 |
+
updated_at_old = None
|
84 |
+
arrays_size_old = 0
|
85 |
+
titles_old = []
|
86 |
+
try:
|
87 |
+
arrays_size_old = G_data[repo]['arrays_size']
|
88 |
+
if size_new <= arrays_size_old:
|
89 |
+
return
|
90 |
+
except:
|
91 |
+
pass
|
92 |
|
93 |
+
arrays_size_new = ARRAY_CHUNK_SIZE * (int(size_new / ARRAY_CHUNK_SIZE) + 1)
|
94 |
+
|
95 |
+
data_new = {
|
96 |
+
'updated_at': updated_at_old,
|
97 |
+
'arrays_size': arrays_size_new,
|
98 |
+
'titles': titles_old + [None] * (arrays_size_new - arrays_size_old),
|
99 |
+
'embeddings': torch.empty((arrays_size_new, *EMBEDDING_CTX.embedding_shape),
|
100 |
+
dtype=EMBEDDING_CTX.embedding_dtype,
|
101 |
+
device=EMBEDDING_CTX.embedding_device),
|
102 |
+
'opened': torch.zeros(arrays_size_new, dtype=torch.bool),
|
103 |
+
'closed': torch.zeros(arrays_size_new, dtype=torch.bool),
|
104 |
+
}
|
105 |
+
|
106 |
+
try:
|
107 |
+
data_new['embeddings'][:arrays_size_old] = G_data[repo]['embeddings']
|
108 |
+
data_new['opened'][:arrays_size_old] = G_data[repo]['opened']
|
109 |
+
data_new['closed'][:arrays_size_old] = G_data[repo]['closed']
|
110 |
+
except:
|
111 |
+
pass
|
112 |
|
113 |
+
G_data[repo] = data_new
|
|
|
114 |
|
|
|
115 |
|
116 |
+
def _embeddings_generate(repo):
|
117 |
+
global G_data
|
118 |
|
119 |
+
if os.path.exists(G_cache_path):
|
120 |
+
with open(G_cache_path, 'rb') as file:
|
121 |
+
G_data = pickle.load(file)
|
122 |
+
if repo in G_data:
|
123 |
+
return
|
124 |
|
125 |
+
issues = gitea_fetch_issues('blender', repo, state='all', since=None,
|
126 |
+
issue_attr_filter=issue_attr_filter)
|
|
|
127 |
|
128 |
+
# issues = sorted(issues, key=lambda issue: int(issue['number']))
|
|
|
|
|
|
|
129 |
|
130 |
+
print("Embedding Issues...")
|
131 |
+
texts_to_embed = _create_strings_to_embbed(issues)
|
132 |
+
embeddings = EMBEDDING_CTX.encode(texts_to_embed)
|
133 |
|
134 |
+
_data_ensure_size(repo, int(issues[0]['number']))
|
135 |
+
G_data[repo]['updated_at'] = _find_latest_date(issues)
|
|
|
136 |
|
137 |
+
titles = G_data[repo]['titles']
|
138 |
+
embeddings_new = G_data[repo]['embeddings']
|
139 |
+
opened = G_data[repo]['opened']
|
140 |
+
closed = G_data[repo]['closed']
|
|
|
|
|
141 |
|
142 |
+
for i, issue in enumerate(issues):
|
143 |
+
number = int(issue['number'])
|
144 |
+
titles[number] = issue['title']
|
145 |
+
embeddings_new[number] = embeddings[i]
|
146 |
+
if issue['state'] == 'open':
|
147 |
+
opened[number] = True
|
148 |
+
if issue['state'] == 'closed':
|
149 |
+
closed[number] = True
|
150 |
|
|
|
151 |
|
152 |
+
def _embeddings_updated_get(repo):
|
153 |
+
global G_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
with EMBEDDING_CTX.lock:
|
156 |
try:
|
157 |
+
data_repo = G_data[repo]
|
|
|
|
|
158 |
except:
|
159 |
+
_embeddings_generate(repo)
|
160 |
+
data_repo = G_data[repo]
|
|
|
161 |
|
162 |
+
date_old = data_repo['updated_at']
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
issues = gitea_fetch_issues(
|
165 |
+
'blender', repo, since=date_old, issue_attr_filter=issue_attr_filter)
|
166 |
|
167 |
+
# Get the most recent date
|
168 |
+
date_new = _find_latest_date(issues, date_old)
|
169 |
|
170 |
+
if date_new == date_old:
|
171 |
+
# Nothing changed
|
172 |
+
return data_repo
|
173 |
|
174 |
+
data_repo['updated_at'] = date_new
|
175 |
|
176 |
+
# autopep8: off
|
177 |
+
# Consider that if the time hasn't changed, it's the same issue.
|
178 |
+
issues = [issue for issue in issues if issue['updated_at'] != date_old]
|
179 |
|
180 |
+
_data_ensure_size(repo, int(issues[0]['number']))
|
|
|
181 |
|
182 |
+
updated_at = gitea_issues_body_updated_at_get(issues)
|
183 |
+
issues_to_embed = []
|
|
|
|
|
184 |
|
185 |
for i, issue in enumerate(issues):
|
186 |
number = int(issue['number'])
|
|
|
|
|
187 |
if issue['state'] == 'open':
|
188 |
+
data_repo['opened'][number] = True
|
189 |
if issue['state'] == 'closed':
|
190 |
+
data_repo['closed'][number] = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
title_old = data_repo['titles'][number]
|
193 |
+
if title_old != issue['title']:
|
194 |
+
data_repo['titles'][number] = issue['title']
|
195 |
+
issues_to_embed.append(issue)
|
196 |
+
elif updated_at[i] >= date_old:
|
197 |
+
issues_to_embed.append(issue)
|
198 |
|
199 |
+
if issues_to_embed:
|
200 |
+
print(f"Embedding {len(issues_to_embed)} issue{'s' if len(issues_to_embed) > 1 else ''}")
|
201 |
+
texts_to_embed = _create_strings_to_embbed(issues_to_embed)
|
202 |
+
embeddings = EMBEDDING_CTX.encode(texts_to_embed)
|
203 |
|
204 |
+
for i, issue in enumerate(issues_to_embed):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
number = int(issue['number'])
|
206 |
+
data_repo['embeddings'][number] = embeddings[i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
# autopep8: on
|
209 |
+
return data_repo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
|
212 |
def _sort_similarity(data: dict,
|
213 |
+
query_emb: List[torch.Tensor],
|
214 |
limit: int,
|
215 |
state: State = State.opened) -> list:
|
216 |
duplicates = []
|
|
|
239 |
|
240 |
|
241 |
def find_relatedness(repo: str, number: int, limit: int = 20, state: State = State.opened):
|
242 |
+
data = _embeddings_updated_get(repo)
|
243 |
|
244 |
# Check if the embedding already exists.
|
245 |
if data['titles'][number] is not None:
|
|
|
266 |
|
267 |
|
268 |
@router.get("/find_related/{repo}/{number}")
|
269 |
+
def find_related(repo: str = 'blender', number: int = 104399, limit: int = 15, state: State = State.opened) -> str:
|
270 |
related = find_relatedness(repo, number, limit=limit, state=state)
|
271 |
return related
|
272 |
|
|
|
274 |
if __name__ == "__main__":
|
275 |
update_cache = True
|
276 |
if update_cache:
|
277 |
+
_embeddings_updated_get('blender')
|
278 |
+
_embeddings_updated_get('blender-addons')
|
279 |
+
with open(G_cache_path, "wb") as file:
|
|
|
280 |
# Converting the embeddings to be CPU compatible, as the virtual machine in use currently only supports the CPU.
|
281 |
+
for val in G_data.values():
|
282 |
val['embeddings'] = val['embeddings'].to(torch.device('cpu'))
|
283 |
|
284 |
+
pickle.dump(G_data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
285 |
+
|
286 |
+
# Converting the embeddings to be GPU.
|
287 |
+
for val in G_data.values():
|
288 |
+
val['embeddings'] = val['embeddings'].to(torch.device('cuda'))
|
289 |
+
|
290 |
+
# 'blender/blender/111434' must print #96153, #83604 and #79762
|
291 |
+
related1 = find_relatedness(
|
292 |
+
'blender', 111434, limit=20, state=State.all)
|
293 |
+
related2 = find_relatedness('blender-addons', 104399, limit=20)
|
294 |
+
|
295 |
+
print("These are the 20 most related issues:")
|
296 |
+
print(related1)
|
297 |
+
print()
|
298 |
+
print("These are the 20 most related issues:")
|
299 |
+
print(related2)
|
|
routers/tool_wiki_search.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# routers/wiki_search.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import re
|
6 |
+
from typing import Dict, List
|
7 |
+
from sentence_transformers import util
|
8 |
+
from fastapi import APIRouter
|
9 |
+
|
10 |
+
try:
|
11 |
+
from .embedding import EMBEDDING_CTX
|
12 |
+
except:
|
13 |
+
from embedding import EMBEDDING_CTX
|
14 |
+
|
15 |
+
router = APIRouter()
|
16 |
+
|
17 |
+
MANUAL_DIR = "D:/BlenderDev/blender-manual/manual/"
|
18 |
+
BASE_URL = "https://docs.blender.org/manual/en/dev"
|
19 |
+
G_cache_path = "routers/embedding/embeddings_manual.pkl"
|
20 |
+
G_data = None
|
21 |
+
|
22 |
+
|
23 |
+
def _embeddings_generate():
|
24 |
+
global G_data
|
25 |
+
|
26 |
+
if os.path.exists(G_cache_path):
|
27 |
+
with open(G_cache_path, 'rb') as file:
|
28 |
+
G_data = pickle.load(file)
|
29 |
+
return G_data
|
30 |
+
|
31 |
+
# path = 'addons/3d_view'
|
32 |
+
G_data = parse_file_recursive(MANUAL_DIR, 'index.rst')
|
33 |
+
G_data['toctree']["copyright"] = parse_file_recursive(
|
34 |
+
MANUAL_DIR, 'copyright.rst')
|
35 |
+
|
36 |
+
# Create a list to store the text files
|
37 |
+
texts = get_texts_recursive(data)
|
38 |
+
|
39 |
+
print("Embedding Texts...")
|
40 |
+
G_data['texts'] = texts
|
41 |
+
G_data['embeddings'] = EMBEDDING_CTX.encode(texts)
|
42 |
+
|
43 |
+
with open(self.cache_path, "wb") as file:
|
44 |
+
# Converting the embeddings to be CPU compatible, as the virtual machine in use currently only supports the CPU.
|
45 |
+
G_data['embeddings'] = G_data['embeddings'].to(
|
46 |
+
torch.device('cpu'))
|
47 |
+
|
48 |
+
pickle.dump(G_data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
49 |
+
|
50 |
+
return G_data
|
51 |
+
|
52 |
+
|
53 |
+
def reduce_text(text):
|
54 |
+
# Remove repeated characters
|
55 |
+
text = re.sub(r'%{2,}', '', text) # Title
|
56 |
+
text = re.sub(r'#{2,}', '', text) # Title
|
57 |
+
text = re.sub(r'\*{3,}', '', text) # Title
|
58 |
+
text = re.sub(r'={3,}', '', text) # Topic
|
59 |
+
text = re.sub(r'\^{3,}', '', text)
|
60 |
+
text = re.sub(r'-{3,}', '', text)
|
61 |
+
|
62 |
+
text = re.sub(r'(\s*\n\s*)+', '\n', text)
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def parse_file_recursive(filedir, filename):
|
67 |
+
with open(os.path.join(filedir, filename), 'r', encoding='utf-8') as file:
|
68 |
+
content = file.read()
|
69 |
+
|
70 |
+
parsed_data = {}
|
71 |
+
|
72 |
+
if not filename.endswith('index.rst'):
|
73 |
+
body = content.strip()
|
74 |
+
else:
|
75 |
+
parts = content.split(".. toctree::")
|
76 |
+
body = parts[0].strip()
|
77 |
+
|
78 |
+
if len(parts) > 1:
|
79 |
+
parsed_data["toctree"] = {}
|
80 |
+
for part in parts[1:]:
|
81 |
+
toctree_entries = part.split('\n')
|
82 |
+
line = toctree_entries[0]
|
83 |
+
for entry in toctree_entries[1:]:
|
84 |
+
entry = entry.strip()
|
85 |
+
if not entry:
|
86 |
+
continue
|
87 |
+
|
88 |
+
if entry.startswith('/'):
|
89 |
+
# relative path.
|
90 |
+
continue
|
91 |
+
|
92 |
+
if not entry.endswith('.rst'):
|
93 |
+
continue
|
94 |
+
|
95 |
+
if entry.endswith('/index.rst'):
|
96 |
+
entry_name = entry[:-10]
|
97 |
+
filedir_ = os.path.join(filedir, entry_name)
|
98 |
+
filename_ = 'index.rst'
|
99 |
+
else:
|
100 |
+
entry_name = entry[:-4]
|
101 |
+
filedir_ = filedir
|
102 |
+
filename_ = entry
|
103 |
+
|
104 |
+
parsed_data['toctree'][entry_name] = parse_file_recursive(
|
105 |
+
filedir_, filename_)
|
106 |
+
|
107 |
+
# The '\n' at the end of the file resolves regex patterns
|
108 |
+
parsed_data['body'] = body + '\n'
|
109 |
+
|
110 |
+
return parsed_data
|
111 |
+
|
112 |
+
|
113 |
+
def split_into_topics(text: str, prefix: str = '') -> Dict[str, List[str]]:
|
114 |
+
"""
|
115 |
+
Splits a text into sections based on titles and subtitles, and organizes them into a dictionary.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
text (str): The input text to be split. The text should contain titles marked by asterisks (***)
|
119 |
+
or subtitles marked by equal signs (===).
|
120 |
+
prefix (str): prefix to titles and subtitles
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
Dict[str, List[str]]: A dictionary where keys are section titles or subtitles, and values are lists of
|
124 |
+
strings corresponding to the content under each title or subtitle.
|
125 |
+
|
126 |
+
Example:
|
127 |
+
text = '''
|
128 |
+
*********************
|
129 |
+
The Blender Community
|
130 |
+
*********************
|
131 |
+
|
132 |
+
Being freely available from the start.
|
133 |
+
|
134 |
+
Independent Sites
|
135 |
+
=================
|
136 |
+
|
137 |
+
There are `several independent websites.
|
138 |
+
|
139 |
+
Getting Support
|
140 |
+
===============
|
141 |
+
|
142 |
+
Blender's community is one of its greatest features.
|
143 |
+
'''
|
144 |
+
|
145 |
+
result = split_in_topics(text)
|
146 |
+
# result will be:
|
147 |
+
# {
|
148 |
+
# "# The Blender Community": [
|
149 |
+
# "Being freely available from the start."
|
150 |
+
# ],
|
151 |
+
# "# The Blender Community | Independent Sites": [
|
152 |
+
# "There are `several independent websites."
|
153 |
+
# ],
|
154 |
+
# "# The Blender Community | Getting Support": [
|
155 |
+
# "Blender's community is one of its greatest features."
|
156 |
+
# ]
|
157 |
+
# }
|
158 |
+
"""
|
159 |
+
|
160 |
+
# Remove patterns ".. word::" and ":word:"
|
161 |
+
text = re.sub(r'\.\. [^\n]+\n+(?: {3,}[^\n]*\n)*|:\w+:', '', text)
|
162 |
+
|
163 |
+
# Regular expression to find titles and subtitles
|
164 |
+
pattern = r'([\*|#|%]{3,}\n[^\n]+\n[\*|#|%]{3,}|(?:={3,}\n)?[^\n]+\n={3,}\n)'
|
165 |
+
|
166 |
+
# Split text by found patterns
|
167 |
+
sections = re.split(pattern, text)
|
168 |
+
|
169 |
+
# Remove possible white spaces at the beginning and end of each section
|
170 |
+
sections = [section for section in sections if section.strip()]
|
171 |
+
|
172 |
+
# Separate sections into a dictionary
|
173 |
+
topics = {}
|
174 |
+
current_title = ''
|
175 |
+
current_topic = prefix
|
176 |
+
|
177 |
+
for section in sections:
|
178 |
+
if match := re.match(r'[\*|#|%]{3,}\n([^\n]+)\n[\*|#|%]{3,}', section):
|
179 |
+
current_topic = current_title = f'{prefix}# {match.group(1)}'
|
180 |
+
topics[current_topic] = []
|
181 |
+
elif match := re.match(r'(?:={3,}\n)?([^\n]+)\n={3,}\n', section):
|
182 |
+
current_topic = current_title + ' | ' + match.group(1)
|
183 |
+
topics[current_topic] = []
|
184 |
+
else:
|
185 |
+
if current_topic == prefix:
|
186 |
+
raise
|
187 |
+
topics[current_topic].append(section)
|
188 |
+
|
189 |
+
return topics
|
190 |
+
|
191 |
+
|
192 |
+
# Function to split the text into chunks of a maximum number of tokens
|
193 |
+
def split_into_many(page_body, prefix=''):
|
194 |
+
tokenizer = EMBEDDING_CTX.model.tokenizer
|
195 |
+
max_tokens = EMBEDDING_CTX.model.max_seq_length
|
196 |
+
topics = split_into_topics(page_body, prefix)
|
197 |
+
|
198 |
+
for topic, content_list in topics.items():
|
199 |
+
title = topic + ':\n'
|
200 |
+
title_tokens_len = len(tokenizer.tokenize(title))
|
201 |
+
content_list_new = []
|
202 |
+
for content in content_list:
|
203 |
+
content_reduced = reduce_text(content)
|
204 |
+
content_tokens_len = len(tokenizer.tokenize(content_reduced))
|
205 |
+
if title_tokens_len + content_tokens_len <= max_tokens:
|
206 |
+
content_list_new.append(content_reduced)
|
207 |
+
continue
|
208 |
+
|
209 |
+
# Split the text into sentences
|
210 |
+
paragraphs = content_reduced.split('.\n')
|
211 |
+
sentences = ''
|
212 |
+
tokens_so_far = title_tokens_len
|
213 |
+
|
214 |
+
# Loop through the sentences and tokens joined together in a tuple
|
215 |
+
for sentence in paragraphs:
|
216 |
+
sentence += '.\n'
|
217 |
+
|
218 |
+
# Get the number of tokens for each sentence
|
219 |
+
n_tokens = len(tokenizer.tokenize(sentence))
|
220 |
+
|
221 |
+
# If the number of tokens so far plus the number of tokens in the current sentence is greater
|
222 |
+
# than the max number of tokens, then add the chunk to the list of chunks and reset
|
223 |
+
# the chunk and tokens so far
|
224 |
+
if tokens_so_far + n_tokens > max_tokens:
|
225 |
+
content_list_new.append(sentences)
|
226 |
+
sentences = ''
|
227 |
+
tokens_so_far = title_tokens_len
|
228 |
+
|
229 |
+
sentences += sentence
|
230 |
+
tokens_so_far += n_tokens
|
231 |
+
|
232 |
+
if sentences:
|
233 |
+
content_list_new.append(sentences)
|
234 |
+
|
235 |
+
# Replace content_list
|
236 |
+
content_list.clear()
|
237 |
+
content_list.extend(content_list_new)
|
238 |
+
|
239 |
+
result = []
|
240 |
+
for topic, content_list in topics.items():
|
241 |
+
for content in content_list:
|
242 |
+
result.append(topic + ':\n' + content)
|
243 |
+
|
244 |
+
return result
|
245 |
+
|
246 |
+
|
247 |
+
def get_texts_recursive(page, path=''):
|
248 |
+
result = split_into_many(page['body'], path)
|
249 |
+
|
250 |
+
try:
|
251 |
+
for key in page['toctree'].keys():
|
252 |
+
page_child = page['toctree'][key]
|
253 |
+
result.extend(get_texts_recursive(page_child, f'{path}/{key}'))
|
254 |
+
except KeyError:
|
255 |
+
pass
|
256 |
+
|
257 |
+
return result
|
258 |
+
|
259 |
+
|
260 |
+
def _sort_similarity(data, text_to_search, limit):
|
261 |
+
results = []
|
262 |
+
|
263 |
+
query_emb = EMBEDDING_CTX.encode([text_to_search])
|
264 |
+
ret = util.semantic_search(
|
265 |
+
query_emb, data['embeddings'], top_k=limit, score_function=util.dot_score)
|
266 |
+
|
267 |
+
texts = data['texts']
|
268 |
+
for score in ret[0]:
|
269 |
+
corpus_id = score['corpus_id']
|
270 |
+
text = texts[corpus_id]
|
271 |
+
results.append(text)
|
272 |
+
|
273 |
+
return results
|
274 |
+
|
275 |
+
|
276 |
+
@router.get("/wiki_search")
|
277 |
+
def wiki_search(query: str = "") -> str:
|
278 |
+
data = _embeddings_generate()
|
279 |
+
texts = _sort_similarity(data, query, 5)
|
280 |
+
|
281 |
+
result = f'BASE_URL: {BASE_URL}\n'
|
282 |
+
for text in texts:
|
283 |
+
index = text.find('#')
|
284 |
+
result += f'''---
|
285 |
+
{text[:index] + '.html'}
|
286 |
+
{text[index:]}
|
287 |
+
|
288 |
+
'''
|
289 |
+
return result
|
290 |
+
|
291 |
+
|
292 |
+
if __name__ == '__main__':
|
293 |
+
tests = ["Set Snap Base", "Building the Manual", "Bisect Object"]
|
294 |
+
result = wiki_search(tests[0])
|
295 |
+
print(result)
|
utils/generate_blender_doc.py
DELETED
@@ -1,194 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import re
|
4 |
-
from sentence_transformers import util
|
5 |
-
|
6 |
-
script_dir = os.path.dirname(os.path.realpath(__file__))
|
7 |
-
parent_dir = os.path.dirname(script_dir)
|
8 |
-
sys.path.append(parent_dir)
|
9 |
-
|
10 |
-
# autopep8: off
|
11 |
-
from routers.tool_find_related import EMBEDDING_CTX
|
12 |
-
# autopep8: on
|
13 |
-
|
14 |
-
MANUAL_DIR = "D:/BlenderDev/blender-manual/manual/"
|
15 |
-
BASE_URL = "https://docs.blender.org/manual/en/dev"
|
16 |
-
|
17 |
-
|
18 |
-
def process_text(text):
|
19 |
-
# Remove repeated characters
|
20 |
-
text = re.sub(r'%{2,}', '', text)
|
21 |
-
text = re.sub(r'#{2,}', '', text)
|
22 |
-
text = re.sub(r'={3,}', '', text)
|
23 |
-
text = re.sub(r'\*{3,}', '', text)
|
24 |
-
text = re.sub(r'\^{3,}', '', text)
|
25 |
-
text = re.sub(r'-{3,}', '', text)
|
26 |
-
|
27 |
-
# Remove patterns ".. word:: " and ":word:"
|
28 |
-
text = re.sub(r'\.\. \S+', '', text)
|
29 |
-
text = re.sub(r':\w+:', '', text)
|
30 |
-
|
31 |
-
text = re.sub(r'(\s*\n\s*)+', '\n', text)
|
32 |
-
return text
|
33 |
-
|
34 |
-
|
35 |
-
def parse_file(filedir, filename):
|
36 |
-
with open(os.path.join(filedir, filename), 'r', encoding='utf-8') as file:
|
37 |
-
content = file.read()
|
38 |
-
|
39 |
-
parsed_data = {}
|
40 |
-
|
41 |
-
if not filename.endswith('index.rst'):
|
42 |
-
body = content.strip()
|
43 |
-
else:
|
44 |
-
parts = content.split(".. toctree::")
|
45 |
-
body = parts[0].strip()
|
46 |
-
|
47 |
-
if len(parts) > 1:
|
48 |
-
parsed_data["toctree"] = {}
|
49 |
-
for part in parts[1:]:
|
50 |
-
toctree_entries = part.split('\n')
|
51 |
-
line = toctree_entries[0]
|
52 |
-
for entry in toctree_entries[1:]:
|
53 |
-
entry = entry.strip()
|
54 |
-
if not entry:
|
55 |
-
continue
|
56 |
-
|
57 |
-
if entry.startswith('/'):
|
58 |
-
# relative path.
|
59 |
-
continue
|
60 |
-
|
61 |
-
if not entry.endswith('.rst'):
|
62 |
-
continue
|
63 |
-
|
64 |
-
if entry.endswith('/index.rst'):
|
65 |
-
entry_name = entry[:-10]
|
66 |
-
filedir_ = os.path.join(filedir, entry_name)
|
67 |
-
filename_ = 'index.rst'
|
68 |
-
else:
|
69 |
-
entry_name = entry[:-4]
|
70 |
-
filedir_ = filedir
|
71 |
-
filename_ = entry
|
72 |
-
|
73 |
-
parsed_data['toctree'][entry_name] = parse_file(
|
74 |
-
filedir_, filename_)
|
75 |
-
|
76 |
-
processed_text = process_text(body)
|
77 |
-
tokens = EMBEDDING_CTX.model.tokenizer.tokenize(processed_text)
|
78 |
-
if len(tokens) > EMBEDDING_CTX.model.max_seq_length:
|
79 |
-
pass
|
80 |
-
# parsed_data['body'] = body
|
81 |
-
parsed_data['processed_text'] = processed_text
|
82 |
-
parsed_data['n_tokens'] = len(tokens)
|
83 |
-
|
84 |
-
return parsed_data
|
85 |
-
|
86 |
-
|
87 |
-
# Function to split the text into chunks of a maximum number of tokens
|
88 |
-
def split_into_many(text, max_tokens):
|
89 |
-
|
90 |
-
# Split the text into sentences
|
91 |
-
paragraphs = text.split('.\n')
|
92 |
-
|
93 |
-
# Get the number of tokens for each sentence
|
94 |
-
n_tokens = [len(EMBEDDING_CTX.model.tokenizer.tokenize(" " + sentence))
|
95 |
-
for sentence in paragraphs]
|
96 |
-
|
97 |
-
chunks = []
|
98 |
-
tokens_so_far = 0
|
99 |
-
chunk = []
|
100 |
-
|
101 |
-
# Loop through the sentences and tokens joined together in a tuple
|
102 |
-
for sentence, token in zip(paragraphs, n_tokens):
|
103 |
-
|
104 |
-
# If the number of tokens so far plus the number of tokens in the current sentence is greater
|
105 |
-
# than the max number of tokens, then add the chunk to the list of chunks and reset
|
106 |
-
# the chunk and tokens so far
|
107 |
-
if tokens_so_far + token > max_tokens:
|
108 |
-
chunks.append((".\n".join(chunk) + ".", tokens_so_far))
|
109 |
-
chunk = []
|
110 |
-
tokens_so_far = 0
|
111 |
-
|
112 |
-
# If the number of tokens in the current sentence is greater than the max number of
|
113 |
-
# tokens, go to the next sentence
|
114 |
-
if token > max_tokens:
|
115 |
-
continue
|
116 |
-
|
117 |
-
# Otherwise, add the sentence to the chunk and add the number of tokens to the total
|
118 |
-
chunk.append(sentence)
|
119 |
-
tokens_so_far += token + 1
|
120 |
-
|
121 |
-
if chunk:
|
122 |
-
chunks.append((".\n".join(chunk) + ".", tokens_so_far))
|
123 |
-
|
124 |
-
return chunks
|
125 |
-
|
126 |
-
|
127 |
-
def get_texts(data, path):
|
128 |
-
result = []
|
129 |
-
processed_texts = [data['processed_text']]
|
130 |
-
processed_tokens = [data['n_tokens']]
|
131 |
-
max_tokens = EMBEDDING_CTX.model.max_seq_length
|
132 |
-
|
133 |
-
data_ = data
|
134 |
-
for key in path:
|
135 |
-
data_ = data_['toctree'][key]
|
136 |
-
processed_texts.append(data_['processed_text'])
|
137 |
-
processed_tokens.append(data_['n_tokens'])
|
138 |
-
|
139 |
-
if processed_tokens[-1] > max_tokens:
|
140 |
-
chunks = split_into_many(processed_texts[-1], max_tokens)
|
141 |
-
else:
|
142 |
-
chunks = [(processed_texts[-1], processed_tokens[-1])]
|
143 |
-
|
144 |
-
for text, n_tokens in chunks:
|
145 |
-
# Add context to the text if we have space
|
146 |
-
for i in range(len(processed_texts) - 2, -1, -1):
|
147 |
-
n_tokens_parent = processed_tokens[i]
|
148 |
-
if n_tokens + n_tokens_parent >= max_tokens:
|
149 |
-
break
|
150 |
-
|
151 |
-
text_parent = processed_texts[i]
|
152 |
-
text = text_parent + '\n' + text
|
153 |
-
n_tokens += n_tokens_parent
|
154 |
-
|
155 |
-
result.append([path, text])
|
156 |
-
|
157 |
-
try:
|
158 |
-
for key in data_['toctree'].keys():
|
159 |
-
result.extend(get_texts(data, path + [key]))
|
160 |
-
except KeyError:
|
161 |
-
pass
|
162 |
-
|
163 |
-
return result
|
164 |
-
|
165 |
-
|
166 |
-
def _sort_similarity(chunks, embeddings, text_to_search, limit):
|
167 |
-
results = []
|
168 |
-
|
169 |
-
query_emb = EMBEDDING_CTX.encode([text_to_search])
|
170 |
-
ret = util.semantic_search(
|
171 |
-
query_emb, embeddings, top_k=limit, score_function=util.dot_score)
|
172 |
-
|
173 |
-
for score in ret[0]:
|
174 |
-
corpus_id = score['corpus_id']
|
175 |
-
chunk = chunks[corpus_id]
|
176 |
-
path = chunk[0]
|
177 |
-
results.append(path)
|
178 |
-
|
179 |
-
return results
|
180 |
-
|
181 |
-
|
182 |
-
if __name__ == '__main__':
|
183 |
-
# path = 'addons/3d_view'
|
184 |
-
data = parse_file(MANUAL_DIR, 'index.rst')
|
185 |
-
data['toctree']["copyright"] = parse_file(MANUAL_DIR, 'copyright.rst')
|
186 |
-
|
187 |
-
# Create a list to store the text files
|
188 |
-
chunks = []
|
189 |
-
chunks.extend(get_texts(data, []))
|
190 |
-
|
191 |
-
embeddings = EMBEDDING_CTX.encode([text for path, text in chunks])
|
192 |
-
|
193 |
-
result = _sort_similarity(chunks, embeddings, "Set Snap Base", 50)
|
194 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|