import gradio as gr from transformers import LlamaForCausalLM, LlamaTokenizer import torch # Load tokenizer tokenizer = LlamaTokenizer.from_pretrained("prashb27/Llama-2-7b-chat-finetune-gym1") # Load the model model = LlamaForCausalLM.from_pretrained( "prashb27/Llama-2-7b-chat-finetune-gym1", device_map="cpu", # Force it to run on CPU ) # Define the inference function def generate_workout_plan(input_text): inputs = tokenizer(input_text, return_tensors="pt").to("cpu") outputs = model.generate(**inputs, max_new_tokens=50) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Define Gradio interface def gradio_interface(user_input): return generate_workout_plan(user_input) # Gradio UI layout iface = gr.Interface( fn=gradio_interface, # Function to generate workout plan inputs=gr.Textbox(lines=2, placeholder="Enter your query..."), # User input outputs="text", # Output is text title="Workout Plan Generator", # Title for the app description="Enter your workout query to generate a personalized plan.", # Description of the app ) # Launch the app iface.launch()