Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer | |
import streamlit as st | |
st.header("MeshTagger π") | |
threshold = st.sidebar.slider("Threshold", value=0.5, min_value=0.0, max_value=1.0) | |
display_probabilities = st.sidebar.checkbox("Display probabilities") | |
if "model" not in st.session_state: | |
with st.spinner("Loading model and tokenizer..."): | |
st.session_state["tokenizer"] = AutoTokenizer.from_pretrained( | |
"Wellcome/WellcomeBertMesh" | |
) | |
st.session_state["model"] = AutoModel.from_pretrained( | |
"Wellcome/WellcomeBertMesh", trust_remote_code=True | |
) | |
model = st.session_state["model"] | |
tokenizer = st.session_state["tokenizer"] | |
text = st.text_area("", value="This text is about Malaria", height=400) | |
inputs = tokenizer([text], padding="max_length") | |
outputs = model(**inputs)[0] | |
if display_probabilities: | |
data = [ | |
(model.id2label[label_id], label_prob.item()) | |
for label_id, label_prob in enumerate(outputs) | |
if label_prob > threshold | |
] | |
st.table(data) | |
else: | |
for label_id, label_prob in enumerate(outputs): | |
if label_prob > threshold: | |
st.button(model.id2label[label_id]) | |