Commit
Β·
f5e5830
1
Parent(s):
6fc6fef
Refactor UI structure and import spaces module
Browse files
app.py
CHANGED
@@ -11,20 +11,9 @@ import spaces
|
|
11 |
import gradio as gr
|
12 |
from huggingface_hub import ModelCard
|
13 |
import torch
|
14 |
-
import numpy as np
|
15 |
from pydantic import BaseModel
|
16 |
from PIL import Image
|
17 |
from diffusers import (
|
18 |
-
FluxPipeline,
|
19 |
-
FluxImg2ImgPipeline,
|
20 |
-
FluxInpaintPipeline,
|
21 |
-
FluxControlNetPipeline,
|
22 |
-
StableDiffusionXLPipeline,
|
23 |
-
StableDiffusionXLImg2ImgPipeline,
|
24 |
-
StableDiffusionXLInpaintPipeline,
|
25 |
-
StableDiffusionXLControlNetPipeline,
|
26 |
-
StableDiffusionXLControlNetImg2ImgPipeline,
|
27 |
-
StableDiffusionXLControlNetInpaintPipeline,
|
28 |
AutoPipelineForText2Image,
|
29 |
AutoPipelineForImage2Image,
|
30 |
AutoPipelineForInpainting,
|
@@ -32,22 +21,12 @@ from diffusers import (
|
|
32 |
AutoencoderKL,
|
33 |
FluxControlNetModel,
|
34 |
FluxMultiControlNetModel,
|
35 |
-
ControlNetModel,
|
36 |
)
|
37 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
38 |
from huggingface_hub import hf_hub_download
|
39 |
-
from transformers import CLIPFeatureExtractor
|
40 |
-
from photomaker import FaceAnalysis2
|
41 |
from diffusers.schedulers import *
|
42 |
from huggingface_hub import hf_hub_download
|
43 |
-
from safetensors.torch import load_file
|
44 |
from controlnet_aux.processor import Processor
|
45 |
-
from
|
46 |
-
PhotoMakerStableDiffusionXLPipeline,
|
47 |
-
PhotoMakerStableDiffusionXLControlNetPipeline,
|
48 |
-
analyze_faces
|
49 |
-
)
|
50 |
-
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl, get_weighted_text_embeddings_flux1
|
51 |
|
52 |
|
53 |
# Initialize System
|
@@ -64,11 +43,6 @@ def load_sd():
|
|
64 |
"repo_id": "black-forest-labs/FLUX.1-dev",
|
65 |
"loader": "flux",
|
66 |
"compute_type": torch.bfloat16,
|
67 |
-
},
|
68 |
-
{
|
69 |
-
"repo_id": "SG161222/RealVisXL_V4.0",
|
70 |
-
"loader": "xl",
|
71 |
-
"compute_type": torch.float16,
|
72 |
}
|
73 |
]
|
74 |
|
@@ -76,96 +50,39 @@ def load_sd():
|
|
76 |
try:
|
77 |
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
|
78 |
model['repo_id'],
|
|
|
79 |
torch_dtype = model['compute_type'],
|
80 |
safety_checker = None,
|
81 |
variant = "fp16"
|
82 |
).to(device)
|
83 |
-
model["pipeline"].enable_model_cpu_offload()
|
84 |
except:
|
85 |
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
|
86 |
model['repo_id'],
|
|
|
87 |
torch_dtype = model['compute_type'],
|
88 |
safety_checker = None
|
89 |
).to(device)
|
90 |
-
|
|
|
91 |
|
92 |
|
93 |
# VAE n Refiner
|
|
|
94 |
sdxl_vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device)
|
95 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=sdxl_vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
|
96 |
refiner.enable_model_cpu_offload()
|
97 |
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
{
|
107 |
-
"repo_id": "xinsir/controlnet-depth-sdxl-1.0",
|
108 |
-
"name": "depth_xl",
|
109 |
-
"layers": ["depth"],
|
110 |
-
"loader": "xl",
|
111 |
-
"compute_type": torch.float16,
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"repo_id": "xinsir/controlnet-canny-sdxl-1.0",
|
115 |
-
"name": "canny_xl",
|
116 |
-
"layers": ["canny"],
|
117 |
-
"loader": "xl",
|
118 |
-
"compute_type": torch.float16,
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"repo_id": "xinsir/controlnet-openpose-sdxl-1.0",
|
122 |
-
"name": "openpose_xl",
|
123 |
-
"layers": ["pose"],
|
124 |
-
"loader": "xl",
|
125 |
-
"compute_type": torch.float16,
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"repo_id": "xinsir/controlnet-scribble-sdxl-1.0",
|
129 |
-
"name": "scribble_xl",
|
130 |
-
"layers": ["scribble"],
|
131 |
-
"loader": "xl",
|
132 |
-
"compute_type": torch.float16,
|
133 |
-
},
|
134 |
-
{
|
135 |
-
"repo_id": "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
136 |
-
"name": "flux1_union_pro",
|
137 |
-
"layers": ["canny_fl", "tile_fl", "depth_fl", "blur_fl", "pose_fl", "gray_fl", "low_quality_fl"],
|
138 |
-
"loader": "flux-multi",
|
139 |
-
"compute_type": torch.bfloat16,
|
140 |
-
}
|
141 |
-
]
|
142 |
-
|
143 |
-
for controlnet in controlnet_models:
|
144 |
-
if controlnet["loader"] == "xl":
|
145 |
-
controlnet["controlnet"] = ControlNetModel.from_pretrained(
|
146 |
-
controlnet["repo_id"],
|
147 |
-
torch_dtype = controlnet['compute_type']
|
148 |
-
).to(device)
|
149 |
-
elif controlnet["loader"] == "flux-multi":
|
150 |
-
controlnet["controlnet"] = FluxMultiControlNetModel([FluxControlNetModel.from_pretrained(
|
151 |
-
controlnet["repo_id"],
|
152 |
-
torch_dtype = controlnet['compute_type']
|
153 |
-
).to(device)])
|
154 |
-
#TODO: Add support for flux only controlnet
|
155 |
-
|
156 |
-
|
157 |
-
# Face Detection (for PhotoMaker)
|
158 |
-
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
|
159 |
-
face_detector.prepare(ctx_id=0, det_size=(640, 640))
|
160 |
-
|
161 |
-
|
162 |
-
# PhotoMaker V2 (for SDXL only)
|
163 |
-
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
|
164 |
-
|
165 |
-
return device, models, sdxl_vae, refiner, safety_checker, feature_extractor, controlnet_models, face_detector, photomaker_ckpt
|
166 |
|
167 |
|
168 |
-
device, models, sdxl_vae, refiner,
|
169 |
|
170 |
|
171 |
# Models
|
@@ -178,13 +95,11 @@ class ControlNetReq(BaseModel):
|
|
178 |
arbitrary_types_allowed=True
|
179 |
|
180 |
|
181 |
-
class
|
182 |
model: str = ""
|
183 |
prompt: str = ""
|
184 |
-
negative_prompt: Optional[str] = "black-forest-labs/FLUX.1-dev"
|
185 |
fast_generation: Optional[bool] = True
|
186 |
loras: Optional[list] = []
|
187 |
-
embeddings: Optional[list] = []
|
188 |
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
|
189 |
scheduler: Optional[str] = "euler_fl"
|
190 |
height: int = 1024
|
@@ -196,13 +111,12 @@ class SDReq(BaseModel):
|
|
196 |
refiner: bool = False
|
197 |
vae: bool = True
|
198 |
controlnet_config: Optional[ControlNetReq] = None
|
199 |
-
photomaker_images: Optional[List[Image.Image]] = None
|
200 |
|
201 |
class Config:
|
202 |
arbitrary_types_allowed=True
|
203 |
|
204 |
|
205 |
-
class
|
206 |
image: Image.Image
|
207 |
strength: float = 1.0
|
208 |
|
@@ -210,115 +124,76 @@ class SDImg2ImgReq(SDReq):
|
|
210 |
arbitrary_types_allowed=True
|
211 |
|
212 |
|
213 |
-
class
|
214 |
mask_image: Image.Image
|
215 |
|
216 |
class Config:
|
217 |
arbitrary_types_allowed=True
|
218 |
|
219 |
|
220 |
-
# Helper
|
221 |
-
def
|
222 |
control_mode = []
|
223 |
-
|
224 |
|
225 |
-
for
|
226 |
-
|
227 |
-
|
228 |
-
control_mode.append(m["layers"].index(c))
|
229 |
-
controlnet.append(m["controlnet"])
|
230 |
|
231 |
-
return
|
232 |
|
233 |
|
234 |
-
def get_pipe(request:
|
235 |
for m in models:
|
236 |
-
if m[
|
237 |
-
pipeline = m['pipeline']
|
238 |
-
controlnet, control_mode = get_controlnet(request.controlnet_config) if request.controlnet_config else (None, None)
|
239 |
-
|
240 |
pipe_args = {
|
241 |
-
"pipeline": pipeline,
|
242 |
-
"control_mode": control_mode,
|
243 |
}
|
|
|
|
|
|
|
244 |
if request.controlnet_config:
|
245 |
-
pipe_args["
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
"fm_euler": (FlowMatchEulerDiscreteScheduler, {}),
|
287 |
-
}
|
288 |
-
scheduler_class, kwargs = schedulers.get(scheduler, (None, {}))
|
289 |
-
|
290 |
-
if scheduler_class is not None:
|
291 |
-
scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs)
|
292 |
-
else:
|
293 |
-
raise ValueError(f"Unknown scheduler: {scheduler}")
|
294 |
-
|
295 |
-
return scheduler
|
296 |
-
|
297 |
-
|
298 |
-
def load_loras(pipeline, loras, fast_generation):
|
299 |
-
for i, lora in enumerate(loras):
|
300 |
-
pipeline.load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
|
301 |
-
adapter_names = [f"lora_{i}" for i in range(len(loras))]
|
302 |
-
adapter_weights = [lora['weight'] for lora in loras]
|
303 |
-
|
304 |
-
if fast_generation:
|
305 |
-
hyper_lora = hf_hub_download(
|
306 |
-
"ByteDance/Hyper-SD",
|
307 |
-
"Hyper-FLUX.1-dev-8steps-lora.safetensors" if isinstance(pipeline, FluxPipeline) else "Hyper-SDXL-2steps-lora.safetensors"
|
308 |
-
)
|
309 |
-
hyper_weight = 0.125 if isinstance(pipeline, FluxPipeline) else 1.0
|
310 |
-
pipeline.load_lora_weights(hyper_lora, adapter_name="hyper_lora")
|
311 |
-
adapter_names.append("hyper_lora")
|
312 |
-
adapter_weights.append(hyper_weight)
|
313 |
-
|
314 |
-
pipeline.set_adapters(adapter_names, adapter_weights)
|
315 |
-
|
316 |
-
|
317 |
-
def load_xl_embeddings(pipeline, embeddings):
|
318 |
-
for embedding in embeddings:
|
319 |
-
state_dict = load_file(hf_hub_download(embedding['repo_id']))
|
320 |
-
pipeline.load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
|
321 |
-
pipeline.load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
|
322 |
|
323 |
|
324 |
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
|
@@ -333,18 +208,16 @@ def resize_images(images: List[Image.Image], height: int, width: int, resize_mod
|
|
333 |
return images
|
334 |
|
335 |
|
336 |
-
def get_controlnet_images(
|
337 |
response_images = []
|
338 |
-
control_images = resize_images(control_images, height, width, resize_mode)
|
339 |
-
for controlnet, image in zip(controlnets, control_images):
|
340 |
-
if controlnet == "canny"
|
341 |
processor = Processor('canny')
|
342 |
-
elif controlnet == "depth"
|
343 |
processor = Processor('depth_midas')
|
344 |
-
elif controlnet == "pose"
|
345 |
processor = Processor('openpose_full')
|
346 |
-
elif controlnet == "scribble":
|
347 |
-
processor = Processor('scribble')
|
348 |
else:
|
349 |
raise ValueError(f"Invalid Controlnet: {controlnet}")
|
350 |
|
@@ -353,72 +226,25 @@ def get_controlnet_images(controlnets: List[str], control_images: List[Image.Ima
|
|
353 |
return response_images
|
354 |
|
355 |
|
356 |
-
def
|
357 |
-
|
358 |
-
has_nsfw_concepts = safety_checker(
|
359 |
-
images=[images],
|
360 |
-
clip_input=safety_checker_input.pixel_values.to("cuda"),
|
361 |
-
)
|
362 |
-
|
363 |
-
return has_nsfw_concepts[1]
|
364 |
-
|
365 |
-
|
366 |
-
def get_prompt_attention(pipeline, prompt, negative_prompt):
|
367 |
-
if isinstance(pipeline, (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)):
|
368 |
-
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt)
|
369 |
-
return prompt_embeds, None, pooled_prompt_embeds, None
|
370 |
-
elif isinstance(pipeline, StableDiffusionXLPipeline):
|
371 |
-
prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt)
|
372 |
-
return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
373 |
-
else:
|
374 |
-
raise ValueError(f"Invalid pipeline type: {type(pipeline)}")
|
375 |
-
|
376 |
-
|
377 |
-
def get_photomaker_images(photomaker_images: List[Image.Image], height: int, width: int, resize_mode: str):
|
378 |
-
image_input_ids = []
|
379 |
-
image_id_embeds = []
|
380 |
-
photomaker_images = resize_images(photomaker_images, height, width, resize_mode)
|
381 |
-
|
382 |
-
for image in photomaker_images:
|
383 |
-
image_input_ids.append(img)
|
384 |
-
img = np.array(image)[:, :, ::-1]
|
385 |
-
faces = analyze_faces(face_detector, image)
|
386 |
-
if len(faces) > 0:
|
387 |
-
image_id_embeds.append(torch.from_numpy(faces[0]['embeddings']))
|
388 |
-
else:
|
389 |
-
raise ValueError("No face detected in the image")
|
390 |
-
|
391 |
-
return image_input_ids, image_id_embeds
|
392 |
|
393 |
|
394 |
-
def cleanup(pipeline, loras = None
|
395 |
if loras:
|
396 |
-
pipeline.disable_lora()
|
397 |
pipeline.unload_lora_weights()
|
398 |
-
if embeddings:
|
399 |
-
pipeline.unload_textual_inversion()
|
400 |
gc.collect()
|
401 |
torch.cuda.empty_cache()
|
402 |
|
403 |
|
404 |
-
# Gen
|
405 |
-
def gen_img(
|
406 |
-
|
407 |
-
|
408 |
-
pipeline_args = get_pipe(request)
|
409 |
-
pipeline = pipeline_args['pipeline']
|
410 |
try:
|
411 |
-
|
412 |
|
413 |
-
|
414 |
-
load_xl_embeddings(pipeline, request.embeddings)
|
415 |
-
|
416 |
-
control_images = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode) if request.controlnet_config else None
|
417 |
-
photomaker_images, photomaker_id_embeds = get_photomaker_images(request.photomaker_images, request.height, request.width) if request.photomaker_images else (None, None)
|
418 |
-
|
419 |
-
positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_prompt_attention(pipeline, request.prompt, request.negative_prompt)
|
420 |
-
|
421 |
-
# Common args
|
422 |
args = {
|
423 |
'prompt_embeds': positive_prompt_embeds,
|
424 |
'pooled_prompt_embeds': positive_prompt_pooled,
|
@@ -430,54 +256,32 @@ def gen_img(
|
|
430 |
'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
|
431 |
}
|
432 |
|
433 |
-
if
|
434 |
-
|
435 |
-
args['
|
436 |
-
args['
|
437 |
-
args['negative_pooled_prompt_embeds'] = negative_prompt_pooled
|
438 |
-
|
439 |
-
if isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
|
440 |
-
args['control_mode'] = pipeline_args['control_mode']
|
441 |
-
args['control_image'] = control_images
|
442 |
-
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
|
443 |
-
|
444 |
-
if not isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
|
445 |
-
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
elif isinstance(request, (SDImg2ImgReq, SDInpaintReq)):
|
450 |
-
args['control_image'] = control_images
|
451 |
-
|
452 |
-
if request.photomaker_images and isinstance(pipeline, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
|
453 |
-
args['input_id_images'] = photomaker_images
|
454 |
-
args['input_id_embeds'] = photomaker_id_embeds
|
455 |
-
args['start_merge_step'] = 10
|
456 |
-
|
457 |
-
if isinstance(request, SDImg2ImgReq):
|
458 |
-
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
|
459 |
-
args['strength'] = request.strength
|
460 |
-
elif isinstance(request, SDInpaintReq):
|
461 |
-
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
|
462 |
-
args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)
|
463 |
args['strength'] = request.strength
|
464 |
|
|
|
|
|
|
|
|
|
465 |
images = pipeline(**args).images
|
466 |
|
|
|
467 |
if request.refiner:
|
468 |
-
images = refiner(
|
469 |
-
prompt=request.prompt,
|
470 |
-
num_inference_steps=40,
|
471 |
-
denoising_start=0.7,
|
472 |
-
image=images.images
|
473 |
-
).images
|
474 |
|
475 |
-
cleanup(pipeline, request.loras
|
476 |
|
477 |
return images
|
478 |
except Exception as e:
|
479 |
-
cleanup(pipeline, request.loras
|
480 |
-
raise
|
|
|
481 |
|
482 |
|
483 |
# CSS
|
@@ -730,18 +534,16 @@ def generate_image(
|
|
730 |
"vae": vae,
|
731 |
"controlnet_config": None,
|
732 |
}
|
733 |
-
base_args =
|
734 |
-
|
735 |
if len(enabled_loras) > 0:
|
736 |
base_args.loras = []
|
737 |
-
for enabled_lora,
|
738 |
-
if enabled_lora
|
739 |
-
base_args.loras.append(
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
}
|
744 |
-
)
|
745 |
|
746 |
image = None
|
747 |
mask_image = None
|
@@ -751,7 +553,7 @@ def generate_image(
|
|
751 |
image = img2img_image
|
752 |
strength = float(img2img_strength)
|
753 |
|
754 |
-
base_args =
|
755 |
**base_args.__dict__,
|
756 |
image=image,
|
757 |
strength=strength
|
@@ -761,7 +563,7 @@ def generate_image(
|
|
761 |
mask_image = inpaint_image['layers'][0] if image else None
|
762 |
strength = float(inpaint_strength)
|
763 |
|
764 |
-
base_args =
|
765 |
**base_args.__dict__,
|
766 |
image=image,
|
767 |
mask_image=mask_image,
|
@@ -775,27 +577,23 @@ def generate_image(
|
|
775 |
)
|
776 |
|
777 |
if canny_image:
|
778 |
-
base_args.controlnet_config.controlnets.append("
|
779 |
base_args.controlnet_config.control_images.append(canny_image)
|
780 |
base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
|
781 |
if pose_image:
|
782 |
-
base_args.controlnet_config.controlnets.append("
|
783 |
base_args.controlnet_config.control_images.append(pose_image)
|
784 |
base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
|
785 |
if depth_image:
|
786 |
-
base_args.controlnet_config.controlnets.append("
|
787 |
base_args.controlnet_config.control_images.append(depth_image)
|
788 |
base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
|
789 |
else:
|
790 |
-
base_args =
|
791 |
-
|
792 |
-
images = gen_img(base_args)
|
793 |
|
794 |
-
return (
|
795 |
-
|
796 |
-
|
797 |
-
interactive=True
|
798 |
-
)
|
799 |
)
|
800 |
|
801 |
|
|
|
11 |
import gradio as gr
|
12 |
from huggingface_hub import ModelCard
|
13 |
import torch
|
|
|
14 |
from pydantic import BaseModel
|
15 |
from PIL import Image
|
16 |
from diffusers import (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
AutoPipelineForText2Image,
|
18 |
AutoPipelineForImage2Image,
|
19 |
AutoPipelineForInpainting,
|
|
|
21 |
AutoencoderKL,
|
22 |
FluxControlNetModel,
|
23 |
FluxMultiControlNetModel,
|
|
|
24 |
)
|
|
|
25 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
26 |
from diffusers.schedulers import *
|
27 |
from huggingface_hub import hf_hub_download
|
|
|
28 |
from controlnet_aux.processor import Processor
|
29 |
+
from sd_embed.embedding_funcs import get_weighted_text_embeddings_flux1
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
# Initialize System
|
|
|
43 |
"repo_id": "black-forest-labs/FLUX.1-dev",
|
44 |
"loader": "flux",
|
45 |
"compute_type": torch.bfloat16,
|
|
|
|
|
|
|
|
|
|
|
46 |
}
|
47 |
]
|
48 |
|
|
|
50 |
try:
|
51 |
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
|
52 |
model['repo_id'],
|
53 |
+
vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device),
|
54 |
torch_dtype = model['compute_type'],
|
55 |
safety_checker = None,
|
56 |
variant = "fp16"
|
57 |
).to(device)
|
|
|
58 |
except:
|
59 |
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
|
60 |
model['repo_id'],
|
61 |
+
vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device),
|
62 |
torch_dtype = model['compute_type'],
|
63 |
safety_checker = None
|
64 |
).to(device)
|
65 |
+
|
66 |
+
model["pipeline"].enable_model_cpu_offload()
|
67 |
|
68 |
|
69 |
# VAE n Refiner
|
70 |
+
flux_vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device)
|
71 |
sdxl_vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device)
|
72 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=sdxl_vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
|
73 |
refiner.enable_model_cpu_offload()
|
74 |
|
75 |
|
76 |
+
# ControlNet
|
77 |
+
controlnet = FluxMultiControlNetModel([FluxControlNetModel.from_pretrained(
|
78 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
79 |
+
torch_dtype=torch.bfloat16
|
80 |
+
).to(device)])
|
81 |
+
|
82 |
+
return device, models, flux_vae, sdxl_vae, refiner, controlnet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
+
device, models, flux_vae, sdxl_vae, refiner, controlnet = load_sd()
|
86 |
|
87 |
|
88 |
# Models
|
|
|
95 |
arbitrary_types_allowed=True
|
96 |
|
97 |
|
98 |
+
class FluxReq(BaseModel):
|
99 |
model: str = ""
|
100 |
prompt: str = ""
|
|
|
101 |
fast_generation: Optional[bool] = True
|
102 |
loras: Optional[list] = []
|
|
|
103 |
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
|
104 |
scheduler: Optional[str] = "euler_fl"
|
105 |
height: int = 1024
|
|
|
111 |
refiner: bool = False
|
112 |
vae: bool = True
|
113 |
controlnet_config: Optional[ControlNetReq] = None
|
|
|
114 |
|
115 |
class Config:
|
116 |
arbitrary_types_allowed=True
|
117 |
|
118 |
|
119 |
+
class FluxImg2ImgReq(FluxReq):
|
120 |
image: Image.Image
|
121 |
strength: float = 1.0
|
122 |
|
|
|
124 |
arbitrary_types_allowed=True
|
125 |
|
126 |
|
127 |
+
class FluxInpaintReq(FluxImg2ImgReq):
|
128 |
mask_image: Image.Image
|
129 |
|
130 |
class Config:
|
131 |
arbitrary_types_allowed=True
|
132 |
|
133 |
|
134 |
+
# Helper Functions
|
135 |
+
def get_control_mode(controlnet_config: ControlNetReq):
|
136 |
control_mode = []
|
137 |
+
layers = ["canny", "tile", "depth", "blur", "pose", "gray", "low_quality"]
|
138 |
|
139 |
+
for c in controlnet_config.controlnets:
|
140 |
+
if c in layers:
|
141 |
+
control_mode.append(layers.index(c))
|
|
|
|
|
142 |
|
143 |
+
return control_mode
|
144 |
|
145 |
|
146 |
+
def get_pipe(request: FluxReq | FluxImg2ImgReq | FluxInpaintReq):
|
147 |
for m in models:
|
148 |
+
if m['repo_id'] == request.model:
|
|
|
|
|
|
|
149 |
pipe_args = {
|
150 |
+
"pipeline": m['pipeline'],
|
|
|
151 |
}
|
152 |
+
|
153 |
+
|
154 |
+
# Set ControlNet config
|
155 |
if request.controlnet_config:
|
156 |
+
pipe_args["control_mode"] = get_control_mode(request.controlnet_config)
|
157 |
+
pipe_args["controlnet"] = [controlnet]
|
158 |
+
|
159 |
+
|
160 |
+
# Choose Pipeline Mode
|
161 |
+
if isinstance(request, FluxReq):
|
162 |
+
pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)
|
163 |
+
elif isinstance(request, FluxImg2ImgReq):
|
164 |
+
pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
|
165 |
+
elif isinstance(request, FluxInpaintReq):
|
166 |
+
pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
|
167 |
+
|
168 |
+
|
169 |
+
# Enable or Disable Refiner
|
170 |
+
if request.vae:
|
171 |
+
pipe_args["pipeline"].vae = flux_vae
|
172 |
+
elif not request.vae:
|
173 |
+
pipe_args["pipeline"].vae = None
|
174 |
+
|
175 |
+
|
176 |
+
# Set Scheduler
|
177 |
+
pipe_args["pipeline"].scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe_args["pipeline"].scheduler.config)
|
178 |
+
|
179 |
+
|
180 |
+
# Set Loras
|
181 |
+
if request.loras:
|
182 |
+
for i, lora in enumerate(request.loras):
|
183 |
+
pipe_args["pipeline"].load_lora_weights(request.lora['repo_id'], adapter_name=f"lora_{i}")
|
184 |
+
adapter_names = [f"lora_{i}" for i in range(len(request.loras))]
|
185 |
+
adapter_weights = [lora['weight'] for lora in request.loras]
|
186 |
+
|
187 |
+
if request.fast_generation:
|
188 |
+
hyper_lora = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
|
189 |
+
hyper_weight = 0.125
|
190 |
+
pipe_args["pipeline"].load_lora_weights(hyper_lora, adapter_name="hyper_lora")
|
191 |
+
adapter_names.append("hyper_lora")
|
192 |
+
adapter_weights.append(hyper_weight)
|
193 |
+
|
194 |
+
pipe_args["pipeline"].set_adapters(adapter_names, adapter_weights)
|
195 |
+
|
196 |
+
return pipe_args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
|
199 |
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
|
|
|
208 |
return images
|
209 |
|
210 |
|
211 |
+
def get_controlnet_images(controlnet_config: ControlNetReq, height: int, width: int, resize_mode: str):
|
212 |
response_images = []
|
213 |
+
control_images = resize_images(controlnet_config.control_images, height, width, resize_mode)
|
214 |
+
for controlnet, image in zip(controlnet_config.controlnets, control_images):
|
215 |
+
if controlnet == "canny":
|
216 |
processor = Processor('canny')
|
217 |
+
elif controlnet == "depth":
|
218 |
processor = Processor('depth_midas')
|
219 |
+
elif controlnet == "pose":
|
220 |
processor = Processor('openpose_full')
|
|
|
|
|
221 |
else:
|
222 |
raise ValueError(f"Invalid Controlnet: {controlnet}")
|
223 |
|
|
|
226 |
return response_images
|
227 |
|
228 |
|
229 |
+
def get_prompt_attention(pipeline, prompt):
|
230 |
+
return get_weighted_text_embeddings_flux1(pipeline, prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
|
233 |
+
def cleanup(pipeline, loras = None):
|
234 |
if loras:
|
|
|
235 |
pipeline.unload_lora_weights()
|
|
|
|
|
236 |
gc.collect()
|
237 |
torch.cuda.empty_cache()
|
238 |
|
239 |
|
240 |
+
# Gen Function
|
241 |
+
def gen_img(request: FluxReq | FluxImg2ImgReq | FluxInpaintReq):
|
242 |
+
pipe_args = get_pipe(request)
|
243 |
+
pipeline = pipe_args["pipeline"]
|
|
|
|
|
244 |
try:
|
245 |
+
positive_prompt_embeds, positive_prompt_pooled = get_prompt_attention(pipeline, request.prompt)
|
246 |
|
247 |
+
# Common Args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
args = {
|
249 |
'prompt_embeds': positive_prompt_embeds,
|
250 |
'pooled_prompt_embeds': positive_prompt_pooled,
|
|
|
256 |
'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
|
257 |
}
|
258 |
|
259 |
+
if request.controlnet_config:
|
260 |
+
args['control_mode'] = get_control_mode(request.controlnet_config)
|
261 |
+
args['control_images'] = get_controlnet_images(request.controlnet_config, request.height, request.width, request.resize_mode)
|
262 |
+
args['controlnet_conditioning_scale'] = request.controlnet_config.controlnet_conditioning_scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
if isinstance(request, (FluxImg2ImgReq, FluxInpaintReq)):
|
265 |
+
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
args['strength'] = request.strength
|
267 |
|
268 |
+
if isinstance(request, FluxInpaintReq):
|
269 |
+
args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)[0]
|
270 |
+
|
271 |
+
# Generate
|
272 |
images = pipeline(**args).images
|
273 |
|
274 |
+
# Refiner
|
275 |
if request.refiner:
|
276 |
+
images = refiner(image=images, prompt=request.prompt, num_inference_steps=40, denoising_start=0.7).images
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
cleanup(pipeline, request.loras)
|
279 |
|
280 |
return images
|
281 |
except Exception as e:
|
282 |
+
cleanup(pipeline, request.loras)
|
283 |
+
raise gr.Error(f"Error: {e}")
|
284 |
+
|
285 |
|
286 |
|
287 |
# CSS
|
|
|
534 |
"vae": vae,
|
535 |
"controlnet_config": None,
|
536 |
}
|
537 |
+
base_args = FluxReq(**base_args)
|
538 |
+
|
539 |
if len(enabled_loras) > 0:
|
540 |
base_args.loras = []
|
541 |
+
for enabled_lora, slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]):
|
542 |
+
if enabled_lora['repo_id']:
|
543 |
+
base_args.loras.append({
|
544 |
+
"repo_id": enabled_lora['repo_id'],
|
545 |
+
"weight": slider
|
546 |
+
})
|
|
|
|
|
547 |
|
548 |
image = None
|
549 |
mask_image = None
|
|
|
553 |
image = img2img_image
|
554 |
strength = float(img2img_strength)
|
555 |
|
556 |
+
base_args = FluxImg2ImgReq(
|
557 |
**base_args.__dict__,
|
558 |
image=image,
|
559 |
strength=strength
|
|
|
563 |
mask_image = inpaint_image['layers'][0] if image else None
|
564 |
strength = float(inpaint_strength)
|
565 |
|
566 |
+
base_args = FluxInpaintReq(
|
567 |
**base_args.__dict__,
|
568 |
image=image,
|
569 |
mask_image=mask_image,
|
|
|
577 |
)
|
578 |
|
579 |
if canny_image:
|
580 |
+
base_args.controlnet_config.controlnets.append("canny")
|
581 |
base_args.controlnet_config.control_images.append(canny_image)
|
582 |
base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
|
583 |
if pose_image:
|
584 |
+
base_args.controlnet_config.controlnets.append("pose")
|
585 |
base_args.controlnet_config.control_images.append(pose_image)
|
586 |
base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
|
587 |
if depth_image:
|
588 |
+
base_args.controlnet_config.controlnets.append("depth")
|
589 |
base_args.controlnet_config.control_images.append(depth_image)
|
590 |
base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
|
591 |
else:
|
592 |
+
base_args = FluxReq(**base_args.__dict__)
|
|
|
|
|
593 |
|
594 |
+
return gr.update(
|
595 |
+
value=gen_img(base_args),
|
596 |
+
interactive=True
|
|
|
|
|
597 |
)
|
598 |
|
599 |
|
app3.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Testing one file gradio app for zero gpu spaces not working as expected.
|
2 |
+
# Check here for the issue: https://huggingface.co/spaces/zero-gpu-explorers/README/discussions/106#66e278a396acd45223e0d00b
|
3 |
+
|
4 |
+
import os
|
5 |
+
import gc
|
6 |
+
import json
|
7 |
+
import random
|
8 |
+
from typing import List, Optional
|
9 |
+
|
10 |
+
import spaces
|
11 |
+
import gradio as gr
|
12 |
+
from huggingface_hub import ModelCard
|
13 |
+
import torch
|
14 |
+
import numpy as np
|
15 |
+
from pydantic import BaseModel
|
16 |
+
from PIL import Image
|
17 |
+
from diffusers import (
|
18 |
+
FluxPipeline,
|
19 |
+
FluxImg2ImgPipeline,
|
20 |
+
FluxInpaintPipeline,
|
21 |
+
FluxControlNetPipeline,
|
22 |
+
StableDiffusionXLPipeline,
|
23 |
+
StableDiffusionXLImg2ImgPipeline,
|
24 |
+
StableDiffusionXLInpaintPipeline,
|
25 |
+
StableDiffusionXLControlNetPipeline,
|
26 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
27 |
+
StableDiffusionXLControlNetInpaintPipeline,
|
28 |
+
AutoPipelineForText2Image,
|
29 |
+
AutoPipelineForImage2Image,
|
30 |
+
AutoPipelineForInpainting,
|
31 |
+
DiffusionPipeline,
|
32 |
+
AutoencoderKL,
|
33 |
+
FluxControlNetModel,
|
34 |
+
FluxMultiControlNetModel,
|
35 |
+
ControlNetModel,
|
36 |
+
)
|
37 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
38 |
+
from huggingface_hub import hf_hub_download
|
39 |
+
from transformers import CLIPFeatureExtractor
|
40 |
+
from photomaker import FaceAnalysis2
|
41 |
+
from diffusers.schedulers import *
|
42 |
+
from huggingface_hub import hf_hub_download
|
43 |
+
from safetensors.torch import load_file
|
44 |
+
from controlnet_aux.processor import Processor
|
45 |
+
from photomaker import (
|
46 |
+
PhotoMakerStableDiffusionXLPipeline,
|
47 |
+
PhotoMakerStableDiffusionXLControlNetPipeline,
|
48 |
+
analyze_faces
|
49 |
+
)
|
50 |
+
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl, get_weighted_text_embeddings_flux1
|
51 |
+
|
52 |
+
|
53 |
+
# Initialize System
|
54 |
+
os.system("pip install --upgrade pip")
|
55 |
+
|
56 |
+
|
57 |
+
def load_sd():
|
58 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
|
61 |
+
# Models
|
62 |
+
models = [
|
63 |
+
{
|
64 |
+
"repo_id": "black-forest-labs/FLUX.1-dev",
|
65 |
+
"loader": "flux",
|
66 |
+
"compute_type": torch.bfloat16,
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"repo_id": "SG161222/RealVisXL_V4.0",
|
70 |
+
"loader": "xl",
|
71 |
+
"compute_type": torch.float16,
|
72 |
+
}
|
73 |
+
]
|
74 |
+
|
75 |
+
for model in models:
|
76 |
+
try:
|
77 |
+
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
|
78 |
+
model['repo_id'],
|
79 |
+
torch_dtype = model['compute_type'],
|
80 |
+
safety_checker = None,
|
81 |
+
variant = "fp16"
|
82 |
+
).to(device)
|
83 |
+
model["pipeline"].enable_model_cpu_offload()
|
84 |
+
except:
|
85 |
+
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
|
86 |
+
model['repo_id'],
|
87 |
+
torch_dtype = model['compute_type'],
|
88 |
+
safety_checker = None
|
89 |
+
).to(device)
|
90 |
+
model["pipeline"].enable_model_cpu_offload()
|
91 |
+
|
92 |
+
|
93 |
+
# VAE n Refiner
|
94 |
+
sdxl_vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device)
|
95 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=sdxl_vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
|
96 |
+
refiner.enable_model_cpu_offload()
|
97 |
+
|
98 |
+
|
99 |
+
# Safety Checker
|
100 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device)
|
101 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32", from_pt=True)
|
102 |
+
|
103 |
+
|
104 |
+
# Controlnets
|
105 |
+
controlnet_models = [
|
106 |
+
{
|
107 |
+
"repo_id": "xinsir/controlnet-depth-sdxl-1.0",
|
108 |
+
"name": "depth_xl",
|
109 |
+
"layers": ["depth"],
|
110 |
+
"loader": "xl",
|
111 |
+
"compute_type": torch.float16,
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"repo_id": "xinsir/controlnet-canny-sdxl-1.0",
|
115 |
+
"name": "canny_xl",
|
116 |
+
"layers": ["canny"],
|
117 |
+
"loader": "xl",
|
118 |
+
"compute_type": torch.float16,
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"repo_id": "xinsir/controlnet-openpose-sdxl-1.0",
|
122 |
+
"name": "openpose_xl",
|
123 |
+
"layers": ["pose"],
|
124 |
+
"loader": "xl",
|
125 |
+
"compute_type": torch.float16,
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"repo_id": "xinsir/controlnet-scribble-sdxl-1.0",
|
129 |
+
"name": "scribble_xl",
|
130 |
+
"layers": ["scribble"],
|
131 |
+
"loader": "xl",
|
132 |
+
"compute_type": torch.float16,
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"repo_id": "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
136 |
+
"name": "flux1_union_pro",
|
137 |
+
"layers": ["canny_fl", "tile_fl", "depth_fl", "blur_fl", "pose_fl", "gray_fl", "low_quality_fl"],
|
138 |
+
"loader": "flux-multi",
|
139 |
+
"compute_type": torch.bfloat16,
|
140 |
+
}
|
141 |
+
]
|
142 |
+
|
143 |
+
for controlnet in controlnet_models:
|
144 |
+
if controlnet["loader"] == "xl":
|
145 |
+
controlnet["controlnet"] = ControlNetModel.from_pretrained(
|
146 |
+
controlnet["repo_id"],
|
147 |
+
torch_dtype = controlnet['compute_type']
|
148 |
+
).to(device)
|
149 |
+
elif controlnet["loader"] == "flux-multi":
|
150 |
+
controlnet["controlnet"] = FluxMultiControlNetModel([FluxControlNetModel.from_pretrained(
|
151 |
+
controlnet["repo_id"],
|
152 |
+
torch_dtype = controlnet['compute_type']
|
153 |
+
).to(device)])
|
154 |
+
#TODO: Add support for flux only controlnet
|
155 |
+
|
156 |
+
|
157 |
+
# Face Detection (for PhotoMaker)
|
158 |
+
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
|
159 |
+
face_detector.prepare(ctx_id=0, det_size=(640, 640))
|
160 |
+
|
161 |
+
|
162 |
+
# PhotoMaker V2 (for SDXL only)
|
163 |
+
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
|
164 |
+
|
165 |
+
return device, models, sdxl_vae, refiner, safety_checker, feature_extractor, controlnet_models, face_detector, photomaker_ckpt
|
166 |
+
|
167 |
+
|
168 |
+
device, models, sdxl_vae, refiner, safety_checker, feature_extractor, controlnet_models, face_detector, photomaker_ckpt = load_sd()
|
169 |
+
|
170 |
+
|
171 |
+
# Models
|
172 |
+
class ControlNetReq(BaseModel):
|
173 |
+
controlnets: List[str] # ["canny", "tile", "depth"]
|
174 |
+
control_images: List[Image.Image]
|
175 |
+
controlnet_conditioning_scale: List[float]
|
176 |
+
|
177 |
+
class Config:
|
178 |
+
arbitrary_types_allowed=True
|
179 |
+
|
180 |
+
|
181 |
+
class SDReq(BaseModel):
|
182 |
+
model: str = ""
|
183 |
+
prompt: str = ""
|
184 |
+
negative_prompt: Optional[str] = "black-forest-labs/FLUX.1-dev"
|
185 |
+
fast_generation: Optional[bool] = True
|
186 |
+
loras: Optional[list] = []
|
187 |
+
embeddings: Optional[list] = []
|
188 |
+
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
|
189 |
+
scheduler: Optional[str] = "euler_fl"
|
190 |
+
height: int = 1024
|
191 |
+
width: int = 1024
|
192 |
+
num_images_per_prompt: int = 1
|
193 |
+
num_inference_steps: int = 8
|
194 |
+
guidance_scale: float = 3.5
|
195 |
+
seed: Optional[int] = 0
|
196 |
+
refiner: bool = False
|
197 |
+
vae: bool = True
|
198 |
+
controlnet_config: Optional[ControlNetReq] = None
|
199 |
+
photomaker_images: Optional[List[Image.Image]] = None
|
200 |
+
|
201 |
+
class Config:
|
202 |
+
arbitrary_types_allowed=True
|
203 |
+
|
204 |
+
|
205 |
+
class SDImg2ImgReq(SDReq):
|
206 |
+
image: Image.Image
|
207 |
+
strength: float = 1.0
|
208 |
+
|
209 |
+
class Config:
|
210 |
+
arbitrary_types_allowed=True
|
211 |
+
|
212 |
+
|
213 |
+
class SDInpaintReq(SDImg2ImgReq):
|
214 |
+
mask_image: Image.Image
|
215 |
+
|
216 |
+
class Config:
|
217 |
+
arbitrary_types_allowed=True
|
218 |
+
|
219 |
+
|
220 |
+
# Helper functions
|
221 |
+
def get_controlnet(controlnet_config: ControlNetReq):
|
222 |
+
control_mode = []
|
223 |
+
controlnet = []
|
224 |
+
|
225 |
+
for m in controlnet_models:
|
226 |
+
for c in controlnet_config.controlnets:
|
227 |
+
if c in m["layers"]:
|
228 |
+
control_mode.append(m["layers"].index(c))
|
229 |
+
controlnet.append(m["controlnet"])
|
230 |
+
|
231 |
+
return controlnet, control_mode
|
232 |
+
|
233 |
+
|
234 |
+
def get_pipe(request: SDReq | SDImg2ImgReq | SDInpaintReq):
|
235 |
+
for m in models:
|
236 |
+
if m["repo_id"] == request.model:
|
237 |
+
pipeline = m['pipeline']
|
238 |
+
controlnet, control_mode = get_controlnet(request.controlnet_config) if request.controlnet_config else (None, None)
|
239 |
+
|
240 |
+
pipe_args = {
|
241 |
+
"pipeline": pipeline,
|
242 |
+
"control_mode": control_mode,
|
243 |
+
}
|
244 |
+
if request.controlnet_config:
|
245 |
+
pipe_args["controlnet"] = controlnet
|
246 |
+
|
247 |
+
if not request.photomaker_images:
|
248 |
+
if isinstance(request, SDReq):
|
249 |
+
pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)
|
250 |
+
elif isinstance(request, SDImg2ImgReq):
|
251 |
+
pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
|
252 |
+
elif isinstance(request, SDInpaintReq):
|
253 |
+
pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
|
254 |
+
else:
|
255 |
+
raise ValueError(f"Unknown request type: {type(request)}")
|
256 |
+
elif isinstance(request, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
|
257 |
+
if request.controlnet_config:
|
258 |
+
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLControlNetPipeline.from_pipe(**pipe_args)
|
259 |
+
else:
|
260 |
+
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLPipeline.from_pipe(**pipe_args)
|
261 |
+
else:
|
262 |
+
raise ValueError(f"Invalid request type: {type(request)}")
|
263 |
+
|
264 |
+
return pipe_args
|
265 |
+
|
266 |
+
|
267 |
+
def load_scheduler(pipeline, scheduler):
|
268 |
+
schedulers = {
|
269 |
+
"dpmpp_2m": (DPMSolverMultistepScheduler, {}),
|
270 |
+
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
|
271 |
+
"dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++"}),
|
272 |
+
"dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "use_karras_sigmas": True}),
|
273 |
+
"dpmpp_sde": (DPMSolverSinglestepScheduler, {}),
|
274 |
+
"dpmpp_sde_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
|
275 |
+
"dpm2": (KDPM2DiscreteScheduler, {}),
|
276 |
+
"dpm2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
|
277 |
+
"dpm2_a": (KDPM2AncestralDiscreteScheduler, {}),
|
278 |
+
"dpm2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
|
279 |
+
"euler": (EulerDiscreteScheduler, {}),
|
280 |
+
"euler_a": (EulerAncestralDiscreteScheduler, {}),
|
281 |
+
"heun": (HeunDiscreteScheduler, {}),
|
282 |
+
"lms": (LMSDiscreteScheduler, {}),
|
283 |
+
"lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
|
284 |
+
"deis": (DEISMultistepScheduler, {}),
|
285 |
+
"unipc": (UniPCMultistepScheduler, {}),
|
286 |
+
"fm_euler": (FlowMatchEulerDiscreteScheduler, {}),
|
287 |
+
}
|
288 |
+
scheduler_class, kwargs = schedulers.get(scheduler, (None, {}))
|
289 |
+
|
290 |
+
if scheduler_class is not None:
|
291 |
+
scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs)
|
292 |
+
else:
|
293 |
+
raise ValueError(f"Unknown scheduler: {scheduler}")
|
294 |
+
|
295 |
+
return scheduler
|
296 |
+
|
297 |
+
|
298 |
+
def load_loras(pipeline, loras, fast_generation):
|
299 |
+
for i, lora in enumerate(loras):
|
300 |
+
pipeline.load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
|
301 |
+
adapter_names = [f"lora_{i}" for i in range(len(loras))]
|
302 |
+
adapter_weights = [lora['weight'] for lora in loras]
|
303 |
+
|
304 |
+
if fast_generation:
|
305 |
+
hyper_lora = hf_hub_download(
|
306 |
+
"ByteDance/Hyper-SD",
|
307 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors" if isinstance(pipeline, FluxPipeline) else "Hyper-SDXL-2steps-lora.safetensors"
|
308 |
+
)
|
309 |
+
hyper_weight = 0.125 if isinstance(pipeline, FluxPipeline) else 1.0
|
310 |
+
pipeline.load_lora_weights(hyper_lora, adapter_name="hyper_lora")
|
311 |
+
adapter_names.append("hyper_lora")
|
312 |
+
adapter_weights.append(hyper_weight)
|
313 |
+
|
314 |
+
pipeline.set_adapters(adapter_names, adapter_weights)
|
315 |
+
|
316 |
+
|
317 |
+
def load_xl_embeddings(pipeline, embeddings):
|
318 |
+
for embedding in embeddings:
|
319 |
+
state_dict = load_file(hf_hub_download(embedding['repo_id']))
|
320 |
+
pipeline.load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
|
321 |
+
pipeline.load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
|
322 |
+
|
323 |
+
|
324 |
+
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
|
325 |
+
for image in images:
|
326 |
+
if resize_mode == "resize_only":
|
327 |
+
image = image.resize((width, height))
|
328 |
+
elif resize_mode == "crop_and_resize":
|
329 |
+
image = image.crop((0, 0, width, height))
|
330 |
+
elif resize_mode == "resize_and_fill":
|
331 |
+
image = image.resize((width, height), Image.Resampling.LANCZOS)
|
332 |
+
|
333 |
+
return images
|
334 |
+
|
335 |
+
|
336 |
+
def get_controlnet_images(controlnets: List[str], control_images: List[Image.Image], height: int, width: int, resize_mode: str):
|
337 |
+
response_images = []
|
338 |
+
control_images = resize_images(control_images, height, width, resize_mode)
|
339 |
+
for controlnet, image in zip(controlnets, control_images):
|
340 |
+
if controlnet == "canny" or controlnet == "canny_xs" or controlnet == "canny_fl":
|
341 |
+
processor = Processor('canny')
|
342 |
+
elif controlnet == "depth" or controlnet == "depth_xs" or controlnet == "depth_fl":
|
343 |
+
processor = Processor('depth_midas')
|
344 |
+
elif controlnet == "pose" or controlnet == "pose_fl":
|
345 |
+
processor = Processor('openpose_full')
|
346 |
+
elif controlnet == "scribble":
|
347 |
+
processor = Processor('scribble')
|
348 |
+
else:
|
349 |
+
raise ValueError(f"Invalid Controlnet: {controlnet}")
|
350 |
+
|
351 |
+
response_images.append(processor(image, to_pil=True))
|
352 |
+
|
353 |
+
return response_images
|
354 |
+
|
355 |
+
|
356 |
+
def check_image_safety(images: List[Image.Image]):
|
357 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
358 |
+
has_nsfw_concepts = safety_checker(
|
359 |
+
images=[images],
|
360 |
+
clip_input=safety_checker_input.pixel_values.to("cuda"),
|
361 |
+
)
|
362 |
+
|
363 |
+
return has_nsfw_concepts[1]
|
364 |
+
|
365 |
+
|
366 |
+
def get_prompt_attention(pipeline, prompt, negative_prompt):
|
367 |
+
if isinstance(pipeline, (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)):
|
368 |
+
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt)
|
369 |
+
return prompt_embeds, None, pooled_prompt_embeds, None
|
370 |
+
elif isinstance(pipeline, StableDiffusionXLPipeline):
|
371 |
+
prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt)
|
372 |
+
return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
373 |
+
else:
|
374 |
+
raise ValueError(f"Invalid pipeline type: {type(pipeline)}")
|
375 |
+
|
376 |
+
|
377 |
+
def get_photomaker_images(photomaker_images: List[Image.Image], height: int, width: int, resize_mode: str):
|
378 |
+
image_input_ids = []
|
379 |
+
image_id_embeds = []
|
380 |
+
photomaker_images = resize_images(photomaker_images, height, width, resize_mode)
|
381 |
+
|
382 |
+
for image in photomaker_images:
|
383 |
+
image_input_ids.append(img)
|
384 |
+
img = np.array(image)[:, :, ::-1]
|
385 |
+
faces = analyze_faces(face_detector, image)
|
386 |
+
if len(faces) > 0:
|
387 |
+
image_id_embeds.append(torch.from_numpy(faces[0]['embeddings']))
|
388 |
+
else:
|
389 |
+
raise ValueError("No face detected in the image")
|
390 |
+
|
391 |
+
return image_input_ids, image_id_embeds
|
392 |
+
|
393 |
+
|
394 |
+
def cleanup(pipeline, loras = None, embeddings = None):
|
395 |
+
if loras:
|
396 |
+
pipeline.disable_lora()
|
397 |
+
pipeline.unload_lora_weights()
|
398 |
+
if embeddings:
|
399 |
+
pipeline.unload_textual_inversion()
|
400 |
+
gc.collect()
|
401 |
+
torch.cuda.empty_cache()
|
402 |
+
|
403 |
+
|
404 |
+
# Gen function
|
405 |
+
def gen_img(
|
406 |
+
request: SDReq | SDImg2ImgReq | SDInpaintReq
|
407 |
+
):
|
408 |
+
pipeline_args = get_pipe(request)
|
409 |
+
pipeline = pipeline_args['pipeline']
|
410 |
+
try:
|
411 |
+
pipeline.scheduler = load_scheduler(pipeline, request.scheduler)
|
412 |
+
|
413 |
+
load_loras(pipeline, request.loras, request.fast_generation)
|
414 |
+
load_xl_embeddings(pipeline, request.embeddings)
|
415 |
+
|
416 |
+
control_images = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode) if request.controlnet_config else None
|
417 |
+
photomaker_images, photomaker_id_embeds = get_photomaker_images(request.photomaker_images, request.height, request.width) if request.photomaker_images else (None, None)
|
418 |
+
|
419 |
+
positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_prompt_attention(pipeline, request.prompt, request.negative_prompt)
|
420 |
+
|
421 |
+
# Common args
|
422 |
+
args = {
|
423 |
+
'prompt_embeds': positive_prompt_embeds,
|
424 |
+
'pooled_prompt_embeds': positive_prompt_pooled,
|
425 |
+
'height': request.height,
|
426 |
+
'width': request.width,
|
427 |
+
'num_images_per_prompt': request.num_images_per_prompt,
|
428 |
+
'num_inference_steps': request.num_inference_steps,
|
429 |
+
'guidance_scale': request.guidance_scale,
|
430 |
+
'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
|
431 |
+
}
|
432 |
+
|
433 |
+
if isinstance(pipeline, any([StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline,
|
434 |
+
StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline])):
|
435 |
+
args['clip_skip'] = request.clip_skip
|
436 |
+
args['negative_prompt_embeds'] = negative_prompt_embeds
|
437 |
+
args['negative_pooled_prompt_embeds'] = negative_prompt_pooled
|
438 |
+
|
439 |
+
if isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
|
440 |
+
args['control_mode'] = pipeline_args['control_mode']
|
441 |
+
args['control_image'] = control_images
|
442 |
+
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
|
443 |
+
|
444 |
+
if not isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
|
445 |
+
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
|
446 |
+
|
447 |
+
if isinstance(request, SDReq):
|
448 |
+
args['image'] = control_images
|
449 |
+
elif isinstance(request, (SDImg2ImgReq, SDInpaintReq)):
|
450 |
+
args['control_image'] = control_images
|
451 |
+
|
452 |
+
if request.photomaker_images and isinstance(pipeline, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
|
453 |
+
args['input_id_images'] = photomaker_images
|
454 |
+
args['input_id_embeds'] = photomaker_id_embeds
|
455 |
+
args['start_merge_step'] = 10
|
456 |
+
|
457 |
+
if isinstance(request, SDImg2ImgReq):
|
458 |
+
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
|
459 |
+
args['strength'] = request.strength
|
460 |
+
elif isinstance(request, SDInpaintReq):
|
461 |
+
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
|
462 |
+
args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)
|
463 |
+
args['strength'] = request.strength
|
464 |
+
|
465 |
+
images = pipeline(**args).images
|
466 |
+
|
467 |
+
if request.refiner:
|
468 |
+
images = refiner(
|
469 |
+
prompt=request.prompt,
|
470 |
+
num_inference_steps=40,
|
471 |
+
denoising_start=0.7,
|
472 |
+
image=images.images
|
473 |
+
).images
|
474 |
+
|
475 |
+
cleanup(pipeline, request.loras, request.embeddings)
|
476 |
+
|
477 |
+
return images
|
478 |
+
except Exception as e:
|
479 |
+
cleanup(pipeline, request.loras, request.embeddings)
|
480 |
+
raise ValueError(f"Error generating image: {e}") from e
|
481 |
+
|
482 |
+
|
483 |
+
# CSS
|
484 |
+
css = """
|
485 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600&display=swap');
|
486 |
+
body {
|
487 |
+
font-family: 'Poppins', sans-serif !important;
|
488 |
+
}
|
489 |
+
.center-content {
|
490 |
+
text-align: center;
|
491 |
+
max-width: 600px;
|
492 |
+
margin: 0 auto;
|
493 |
+
padding: 20px;
|
494 |
+
}
|
495 |
+
.center-content h1 {
|
496 |
+
font-weight: 600;
|
497 |
+
margin-bottom: 1rem;
|
498 |
+
}
|
499 |
+
.center-content p {
|
500 |
+
margin-bottom: 1.5rem;
|
501 |
+
}
|
502 |
+
"""
|
503 |
+
|
504 |
+
|
505 |
+
flux_models = ["black-forest-labs/FLUX.1-dev"]
|
506 |
+
with open("data/images/loras/flux.json", "r") as f:
|
507 |
+
loras = json.load(f)
|
508 |
+
|
509 |
+
|
510 |
+
# Event functions
|
511 |
+
def update_fast_generation(model, fast_generation):
|
512 |
+
if fast_generation:
|
513 |
+
return (
|
514 |
+
gr.update(
|
515 |
+
value=3.5
|
516 |
+
),
|
517 |
+
gr.update(
|
518 |
+
value=8
|
519 |
+
)
|
520 |
+
)
|
521 |
+
|
522 |
+
|
523 |
+
def selected_lora_from_gallery(evt: gr.SelectData):
|
524 |
+
return (
|
525 |
+
gr.update(
|
526 |
+
value=evt.index
|
527 |
+
)
|
528 |
+
)
|
529 |
+
|
530 |
+
|
531 |
+
def update_selected_lora(custom_lora):
|
532 |
+
link = custom_lora.split("/")
|
533 |
+
|
534 |
+
if len(link) == 2:
|
535 |
+
model_card = ModelCard.load(custom_lora)
|
536 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
537 |
+
image_url = f"""https://huggingface.co/{custom_lora}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}"""
|
538 |
+
|
539 |
+
custom_lora_info_css = """
|
540 |
+
<style>
|
541 |
+
.custom-lora-info {
|
542 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif;
|
543 |
+
background: linear-gradient(135deg, #4a90e2, #7b61ff);
|
544 |
+
color: white;
|
545 |
+
padding: 16px;
|
546 |
+
border-radius: 8px;
|
547 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
548 |
+
margin: 16px 0;
|
549 |
+
}
|
550 |
+
.custom-lora-header {
|
551 |
+
font-size: 18px;
|
552 |
+
font-weight: 600;
|
553 |
+
margin-bottom: 12px;
|
554 |
+
}
|
555 |
+
.custom-lora-content {
|
556 |
+
display: flex;
|
557 |
+
align-items: center;
|
558 |
+
background-color: rgba(255, 255, 255, 0.1);
|
559 |
+
border-radius: 6px;
|
560 |
+
padding: 12px;
|
561 |
+
}
|
562 |
+
.custom-lora-image {
|
563 |
+
width: 80px;
|
564 |
+
height: 80px;
|
565 |
+
object-fit: cover;
|
566 |
+
border-radius: 6px;
|
567 |
+
margin-right: 16px;
|
568 |
+
}
|
569 |
+
.custom-lora-text h3 {
|
570 |
+
margin: 0 0 8px 0;
|
571 |
+
font-size: 16px;
|
572 |
+
font-weight: 600;
|
573 |
+
}
|
574 |
+
.custom-lora-text small {
|
575 |
+
font-size: 14px;
|
576 |
+
opacity: 0.9;
|
577 |
+
}
|
578 |
+
.custom-trigger-word {
|
579 |
+
background-color: rgba(255, 255, 255, 0.2);
|
580 |
+
padding: 2px 6px;
|
581 |
+
border-radius: 4px;
|
582 |
+
font-weight: 600;
|
583 |
+
}
|
584 |
+
</style>
|
585 |
+
"""
|
586 |
+
|
587 |
+
custom_lora_info_html = f"""
|
588 |
+
<div class="custom-lora-info">
|
589 |
+
<div class="custom-lora-header">Custom LoRA: {custom_lora}</div>
|
590 |
+
<div class="custom-lora-content">
|
591 |
+
<img class="custom-lora-image" src="{image_url}" alt="LoRA preview">
|
592 |
+
<div class="custom-lora-text">
|
593 |
+
<h3>{link[1].replace("-", " ").replace("_", " ")}</h3>
|
594 |
+
<small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small>
|
595 |
+
</div>
|
596 |
+
</div>
|
597 |
+
</div>
|
598 |
+
"""
|
599 |
+
|
600 |
+
custom_lora_info_html = f"{custom_lora_info_css}{custom_lora_info_html}"
|
601 |
+
|
602 |
+
return (
|
603 |
+
gr.update( # selected_lora
|
604 |
+
value=custom_lora,
|
605 |
+
),
|
606 |
+
gr.update( # custom_lora_info
|
607 |
+
value=custom_lora_info_html,
|
608 |
+
visible=True
|
609 |
+
)
|
610 |
+
)
|
611 |
+
|
612 |
+
else:
|
613 |
+
return (
|
614 |
+
gr.update( # selected_lora
|
615 |
+
value=custom_lora,
|
616 |
+
),
|
617 |
+
gr.update( # custom_lora_info
|
618 |
+
value=custom_lora_info_html if len(link) == 0 else "",
|
619 |
+
visible=False
|
620 |
+
)
|
621 |
+
)
|
622 |
+
|
623 |
+
|
624 |
+
def add_to_enabled_loras(model, selected_lora, enabled_loras):
|
625 |
+
lora_data = loras
|
626 |
+
try:
|
627 |
+
selected_lora = int(selected_lora)
|
628 |
+
|
629 |
+
if 0 <= selected_lora: # is the index of the lora in the gallery
|
630 |
+
lora_info = lora_data[selected_lora]
|
631 |
+
enabled_loras.append({
|
632 |
+
"repo_id": lora_info["repo"],
|
633 |
+
"trigger_word": lora_info["trigger_word"]
|
634 |
+
})
|
635 |
+
except ValueError:
|
636 |
+
link = selected_lora.split("/")
|
637 |
+
if len(link) == 2:
|
638 |
+
model_card = ModelCard.load(selected_lora)
|
639 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
640 |
+
enabled_loras.append({
|
641 |
+
"repo_id": selected_lora,
|
642 |
+
"trigger_word": trigger_word
|
643 |
+
})
|
644 |
+
|
645 |
+
return (
|
646 |
+
gr.update( # selected_lora
|
647 |
+
value=""
|
648 |
+
),
|
649 |
+
gr.update( # custom_lora_info
|
650 |
+
value="",
|
651 |
+
visible=False
|
652 |
+
),
|
653 |
+
gr.update( # enabled_loras
|
654 |
+
value=enabled_loras
|
655 |
+
)
|
656 |
+
)
|
657 |
+
|
658 |
+
|
659 |
+
def update_lora_sliders(enabled_loras):
|
660 |
+
sliders = []
|
661 |
+
remove_buttons = []
|
662 |
+
|
663 |
+
for lora in enabled_loras:
|
664 |
+
sliders.append(
|
665 |
+
gr.update(
|
666 |
+
label=lora.get("repo_id", ""),
|
667 |
+
info=f"Trigger Word: {lora.get('trigger_word', '')}",
|
668 |
+
visible=True,
|
669 |
+
interactive=True
|
670 |
+
)
|
671 |
+
)
|
672 |
+
remove_buttons.append(
|
673 |
+
gr.update(
|
674 |
+
visible=True,
|
675 |
+
interactive=True
|
676 |
+
)
|
677 |
+
)
|
678 |
+
|
679 |
+
if len(sliders) < 6:
|
680 |
+
for i in range(len(sliders), 6):
|
681 |
+
sliders.append(
|
682 |
+
gr.update(
|
683 |
+
visible=False
|
684 |
+
)
|
685 |
+
)
|
686 |
+
remove_buttons.append(
|
687 |
+
gr.update(
|
688 |
+
visible=False
|
689 |
+
)
|
690 |
+
)
|
691 |
+
|
692 |
+
return *sliders, *remove_buttons
|
693 |
+
|
694 |
+
|
695 |
+
def remove_from_enabled_loras(enabled_loras, index):
|
696 |
+
enabled_loras.pop(index)
|
697 |
+
return (
|
698 |
+
gr.update(
|
699 |
+
value=enabled_loras
|
700 |
+
)
|
701 |
+
)
|
702 |
+
|
703 |
+
|
704 |
+
@spaces.GPU
|
705 |
+
def generate_image(
|
706 |
+
model, prompt, negative_prompt, fast_generation, enabled_loras,
|
707 |
+
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5,
|
708 |
+
img2img_image, inpaint_image, canny_image, pose_image, depth_image,
|
709 |
+
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength,
|
710 |
+
resize_mode,
|
711 |
+
scheduler, image_height, image_width, image_num_images_per_prompt,
|
712 |
+
image_num_inference_steps, image_guidance_scale, image_seed,
|
713 |
+
refiner, vae
|
714 |
+
):
|
715 |
+
base_args = {
|
716 |
+
"model": model,
|
717 |
+
"prompt": prompt,
|
718 |
+
"negative_prompt": negative_prompt,
|
719 |
+
"fast_generation": fast_generation,
|
720 |
+
"loras": None,
|
721 |
+
"resize_mode": resize_mode,
|
722 |
+
"scheduler": scheduler,
|
723 |
+
"height": int(image_height),
|
724 |
+
"width": int(image_width),
|
725 |
+
"num_images_per_prompt": float(image_num_images_per_prompt),
|
726 |
+
"num_inference_steps": float(image_num_inference_steps),
|
727 |
+
"guidance_scale": float(image_guidance_scale),
|
728 |
+
"seed": int(image_seed),
|
729 |
+
"refiner": refiner,
|
730 |
+
"vae": vae,
|
731 |
+
"controlnet_config": None,
|
732 |
+
}
|
733 |
+
base_args = SDReq(**base_args)
|
734 |
+
|
735 |
+
if len(enabled_loras) > 0:
|
736 |
+
base_args.loras = []
|
737 |
+
for enabled_lora, lora_slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]):
|
738 |
+
if enabled_lora.get("repo_id", None):
|
739 |
+
base_args.loras.append(
|
740 |
+
{
|
741 |
+
"repo_id": enabled_lora["repo_id"],
|
742 |
+
"weight": lora_slider
|
743 |
+
}
|
744 |
+
)
|
745 |
+
|
746 |
+
image = None
|
747 |
+
mask_image = None
|
748 |
+
strength = None
|
749 |
+
|
750 |
+
if img2img_image:
|
751 |
+
image = img2img_image
|
752 |
+
strength = float(img2img_strength)
|
753 |
+
|
754 |
+
base_args = SDImg2ImgReq(
|
755 |
+
**base_args.__dict__,
|
756 |
+
image=image,
|
757 |
+
strength=strength
|
758 |
+
)
|
759 |
+
elif inpaint_image:
|
760 |
+
image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None
|
761 |
+
mask_image = inpaint_image['layers'][0] if image else None
|
762 |
+
strength = float(inpaint_strength)
|
763 |
+
|
764 |
+
base_args = SDInpaintReq(
|
765 |
+
**base_args.__dict__,
|
766 |
+
image=image,
|
767 |
+
mask_image=mask_image,
|
768 |
+
strength=strength
|
769 |
+
)
|
770 |
+
elif any([canny_image, pose_image, depth_image]):
|
771 |
+
base_args.controlnet_config = ControlNetReq(
|
772 |
+
controlnets=[],
|
773 |
+
control_images=[],
|
774 |
+
controlnet_conditioning_scale=[]
|
775 |
+
)
|
776 |
+
|
777 |
+
if canny_image:
|
778 |
+
base_args.controlnet_config.controlnets.append("canny_fl")
|
779 |
+
base_args.controlnet_config.control_images.append(canny_image)
|
780 |
+
base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
|
781 |
+
if pose_image:
|
782 |
+
base_args.controlnet_config.controlnets.append("pose_fl")
|
783 |
+
base_args.controlnet_config.control_images.append(pose_image)
|
784 |
+
base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
|
785 |
+
if depth_image:
|
786 |
+
base_args.controlnet_config.controlnets.append("depth_fl")
|
787 |
+
base_args.controlnet_config.control_images.append(depth_image)
|
788 |
+
base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
|
789 |
+
else:
|
790 |
+
base_args = SDReq(**base_args.__dict__)
|
791 |
+
|
792 |
+
images = gen_img(base_args)
|
793 |
+
|
794 |
+
return (
|
795 |
+
gr.update(
|
796 |
+
value=images,
|
797 |
+
interactive=True
|
798 |
+
)
|
799 |
+
)
|
800 |
+
|
801 |
+
|
802 |
+
# Main Gradio app
|
803 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
804 |
+
# Header
|
805 |
+
with gr.Column(elem_classes="center-content"):
|
806 |
+
gr.Markdown("""
|
807 |
+
# π AAI: All AI
|
808 |
+
Unleash your creativity with our multi-modal AI platform.
|
809 |
+
[](https://github.com/mantrakp04/aai/actions/workflows/hf-space.yml)
|
810 |
+
""")
|
811 |
+
|
812 |
+
# Tabs
|
813 |
+
with gr.Tabs():
|
814 |
+
with gr.Tab(label="πΌοΈ Image"):
|
815 |
+
with gr.Tabs():
|
816 |
+
with gr.Tab("Flux"):
|
817 |
+
"""
|
818 |
+
Create the image tab for Generative Image Generation Models
|
819 |
+
|
820 |
+
Args:
|
821 |
+
models: list
|
822 |
+
A list containing the models repository paths
|
823 |
+
gap_iol, gap_la, gap_le, gap_eio, gap_io: Optional[List[dict]]
|
824 |
+
A list of dictionaries containing the title and component for the custom gradio component
|
825 |
+
Example:
|
826 |
+
def gr_comp():
|
827 |
+
gr.Label("Hello World")
|
828 |
+
|
829 |
+
[
|
830 |
+
{
|
831 |
+
'title': "Title",
|
832 |
+
'component': gr_comp()
|
833 |
+
}
|
834 |
+
]
|
835 |
+
loras: list
|
836 |
+
A list of dictionaries containing the image and title for the Loras Gallery
|
837 |
+
Generally a loaded json file from the data folder
|
838 |
+
|
839 |
+
"""
|
840 |
+
def process_gaps(gaps: List[dict]):
|
841 |
+
for gap in gaps:
|
842 |
+
with gr.Accordion(gap['title']):
|
843 |
+
gap['component']
|
844 |
+
|
845 |
+
|
846 |
+
with gr.Row():
|
847 |
+
with gr.Column():
|
848 |
+
with gr.Group() as image_options:
|
849 |
+
model = gr.Dropdown(label="Models", choices=flux_models, value=flux_models[0], interactive=True)
|
850 |
+
prompt = gr.Textbox(lines=5, label="Prompt")
|
851 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
852 |
+
fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) π§ͺ")
|
853 |
+
|
854 |
+
|
855 |
+
with gr.Accordion("Loras", open=True): # Lora Gallery
|
856 |
+
lora_gallery = gr.Gallery(
|
857 |
+
label="Gallery",
|
858 |
+
value=[(lora['image'], lora['title']) for lora in loras],
|
859 |
+
allow_preview=False,
|
860 |
+
columns=[3],
|
861 |
+
type="pil"
|
862 |
+
)
|
863 |
+
|
864 |
+
with gr.Group():
|
865 |
+
with gr.Column():
|
866 |
+
with gr.Row():
|
867 |
+
custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path")
|
868 |
+
selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA")
|
869 |
+
|
870 |
+
custom_lora_info = gr.HTML(visible=False)
|
871 |
+
add_lora = gr.Button(value="Add LoRA")
|
872 |
+
|
873 |
+
enabled_loras = gr.State(value=[])
|
874 |
+
with gr.Group():
|
875 |
+
with gr.Row():
|
876 |
+
for i in range(6): # only support max 6 loras due to inference time
|
877 |
+
with gr.Column():
|
878 |
+
with gr.Column(scale=2):
|
879 |
+
globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True)
|
880 |
+
with gr.Column():
|
881 |
+
globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False)
|
882 |
+
|
883 |
+
|
884 |
+
with gr.Accordion("Embeddings", open=False): # Embeddings
|
885 |
+
gr.Label("To be implemented")
|
886 |
+
|
887 |
+
|
888 |
+
with gr.Accordion("Image Options"): # Image Options
|
889 |
+
with gr.Tabs():
|
890 |
+
image_options = {
|
891 |
+
"img2img": "Upload Image",
|
892 |
+
"inpaint": "Upload Image",
|
893 |
+
"canny": "Upload Image",
|
894 |
+
"pose": "Upload Image",
|
895 |
+
"depth": "Upload Image",
|
896 |
+
}
|
897 |
+
|
898 |
+
for image_option, label in image_options.items():
|
899 |
+
with gr.Tab(image_option):
|
900 |
+
if not image_option in ['inpaint', 'scribble']:
|
901 |
+
globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil")
|
902 |
+
elif image_option in ['inpaint', 'scribble']:
|
903 |
+
globals()[f"{image_option}_image"] = gr.ImageEditor(
|
904 |
+
label=label,
|
905 |
+
image_mode='RGB',
|
906 |
+
layers=False,
|
907 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(),
|
908 |
+
interactive=True,
|
909 |
+
type="pil",
|
910 |
+
)
|
911 |
+
|
912 |
+
# Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint)
|
913 |
+
globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True)
|
914 |
+
|
915 |
+
resize_mode = gr.Radio(
|
916 |
+
label="Resize Mode",
|
917 |
+
choices=["crop and resize", "resize only", "resize and fill"],
|
918 |
+
value="resize and fill",
|
919 |
+
interactive=True
|
920 |
+
)
|
921 |
+
|
922 |
+
|
923 |
+
with gr.Column():
|
924 |
+
with gr.Group():
|
925 |
+
output_images = gr.Gallery(
|
926 |
+
label="Output Images",
|
927 |
+
value=[],
|
928 |
+
allow_preview=True,
|
929 |
+
type="pil",
|
930 |
+
interactive=False,
|
931 |
+
)
|
932 |
+
generate_images = gr.Button(value="Generate Images", variant="primary")
|
933 |
+
|
934 |
+
with gr.Accordion("Advance Settings", open=True):
|
935 |
+
with gr.Row():
|
936 |
+
scheduler = gr.Dropdown(
|
937 |
+
label="Scheduler",
|
938 |
+
choices = [
|
939 |
+
"fm_euler"
|
940 |
+
],
|
941 |
+
value="fm_euler",
|
942 |
+
interactive=True
|
943 |
+
)
|
944 |
+
|
945 |
+
with gr.Row():
|
946 |
+
for column in range(2):
|
947 |
+
with gr.Column():
|
948 |
+
options = [
|
949 |
+
("Height", "image_height", 64, 1024, 64, 1024, True),
|
950 |
+
("Width", "image_width", 64, 1024, 64, 1024, True),
|
951 |
+
("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True),
|
952 |
+
("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True),
|
953 |
+
("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False),
|
954 |
+
("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True),
|
955 |
+
("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True),
|
956 |
+
]
|
957 |
+
for label, var_name, min_val, max_val, step, value, visible in options[column::2]:
|
958 |
+
globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True)
|
959 |
+
|
960 |
+
with gr.Row():
|
961 |
+
refiner = gr.Checkbox(
|
962 |
+
label="Refiner π§ͺ",
|
963 |
+
value=False,
|
964 |
+
)
|
965 |
+
vae = gr.Checkbox(
|
966 |
+
label="VAE",
|
967 |
+
value=True,
|
968 |
+
)
|
969 |
+
|
970 |
+
|
971 |
+
# Events
|
972 |
+
# Base Options
|
973 |
+
fast_generation.change(update_fast_generation, [model, fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore
|
974 |
+
|
975 |
+
|
976 |
+
# Lora Gallery
|
977 |
+
lora_gallery.select(selected_lora_from_gallery, None, selected_lora)
|
978 |
+
custom_lora.change(update_selected_lora, custom_lora, [custom_lora, selected_lora])
|
979 |
+
add_lora.click(add_to_enabled_loras, [model, selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras])
|
980 |
+
enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore
|
981 |
+
|
982 |
+
for i in range(6):
|
983 |
+
globals()[f"lora_remove_{i}"].click(
|
984 |
+
lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index),
|
985 |
+
[enabled_loras],
|
986 |
+
[enabled_loras]
|
987 |
+
)
|
988 |
+
|
989 |
+
|
990 |
+
# Generate Image
|
991 |
+
generate_images.click(
|
992 |
+
generate_image, # type: ignore
|
993 |
+
[
|
994 |
+
model, prompt, negative_prompt, fast_generation, enabled_loras,
|
995 |
+
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
|
996 |
+
img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore
|
997 |
+
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore
|
998 |
+
resize_mode,
|
999 |
+
scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
|
1000 |
+
image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore
|
1001 |
+
refiner, vae
|
1002 |
+
],
|
1003 |
+
[output_images]
|
1004 |
+
)
|
1005 |
+
with gr.Tab("SDXL"):
|
1006 |
+
gr.Label("To be implemented")
|
1007 |
+
with gr.Tab(label="π΅ Audio"):
|
1008 |
+
gr.Label("Coming soon!")
|
1009 |
+
with gr.Tab(label="π¬ Video"):
|
1010 |
+
gr.Label("Coming soon!")
|
1011 |
+
with gr.Tab(label="π Text"):
|
1012 |
+
gr.Label("Coming soon!")
|
1013 |
+
|
1014 |
+
|
1015 |
+
demo.launch(
|
1016 |
+
share=False,
|
1017 |
+
debug=True,
|
1018 |
+
)
|