assessment3 / app.py
Manuel Calzolari
Add check
3b39107
raw
history blame
4.22 kB
# Import modules
import os
import torch
import gradio as gr
from langchain_community.llms import HuggingFacePipeline
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import PromptTemplate
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig, pipeline
HUGGINGFACE_ACCESS_TOKEN = os.environ["HUGGINGFACE_ACCESS_TOKEN"]
base_model = "microsoft/phi-2"
# Define the embedding function
# I use the "all-MiniLM-L6-v2" model
embedding_function = SentenceTransformerEmbeddings(
model_name="all-MiniLM-L6-v2",
model_kwargs={"device": "cuda"}, # Use the GPU
)
tokenizer = AutoTokenizer.from_pretrained(
base_model,
use_fast=True,
token=HUGGINGFACE_ACCESS_TOKEN,
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=False,
)
# Load the fine-tuned model by merging the base model and the adapter
# (checkpointed at 1 epoch = 77 steps)
adapter = "./results/checkpoint-77"
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
trust_remote_code=True,
device_map={"": 0},
token=HUGGINGFACE_ACCESS_TOKEN,
)
model_ft = PeftModel.from_pretrained(model, adapter)
# For inference, use a text-generation pipeline
# NOTE: you could get a warning such as "The model 'PeftModelForCausalLM' is not
# supported for text-generation", but it's not a problem
config = GenerationConfig(max_new_tokens=200)
pipe = pipeline(
"text-generation",
model=model_ft,
tokenizer=tokenizer,
generation_config=config,
framework="pt",
)
"""
NOTE: Although not strictly required by the assignment, considering that for
Point 1 we created the embeddings of the emails and saved them in Chroma, it is
trivial to add a simple RAG system. Basically, when a question is asked, some
emails (or part of them) similar to the question are also sent to the model as
context.
"""
# Load the saved database
persist_directory = "./chroma_db"
db = Chroma(
persist_directory=persist_directory,
embedding_function=embedding_function,
)
# Setup a retriever so that we get the 2 most similar texts
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 2})
# Wrap the Hugging Face pipeline for langchain
llm = HuggingFacePipeline(pipeline=pipe)
# This is the template we will use for the text to submit to the model.
# In place of {context} will be inserted the context sentences retrieved from
# the RAG system, and in place of {question} will be inserted the question.
template = """Instruct:
You are an AI assistant for answering questions about the provided context.
You are given the following extracted parts of a document database and a question. Provide a short answer.
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
=======
{context}
=======
Question: {question}
Output:"""
custom_rag_prompt = PromptTemplate.from_template(template)
def format_docs(docs):
# Separates retrieved texts with a double return character
return "\n\n".join(doc.page_content for doc in docs)
# RAG pipeline
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| custom_rag_prompt
| llm
)
def get_answer(question):
if not question.strip():
return "Please enter a question."
try:
# Submit the question to the pipeline and extract the output
answer = rag_chain.invoke(question).split("Output:")[1].strip()
except Exception as e:
answer = str(e)
return answer
# Define and launch the Gradio interface
interface = gr.Interface(
fn=get_answer,
inputs=gr.Textbox(label="Enter your question"),
outputs=gr.Textbox(label="Answer"),
title="Enron QA",
examples=[
["What is the strategy in agricultural commodities training?"]
],
)
interface.launch()