hocherie
add files
4187c6f
# Copyright (c) Meta Platforms, Inc. and affiliates.
# Adapted from Hierarchical-Localization, Paul-Edouard Sarlin, ETH Zurich
# https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/utils/viz.py
# Released under the Apache License 2.0
import numpy as np
import torch
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
def features_to_RGB(*Fs, masks=None, skip=1):
"""Project a list of d-dimensional feature maps to RGB colors using PCA."""
from sklearn.decomposition import PCA
def normalize(x):
return x / np.linalg.norm(x, axis=-1, keepdims=True)
if masks is not None:
assert len(Fs) == len(masks)
flatten = []
for i, F in enumerate(Fs):
c, h, w = F.shape
F = np.rollaxis(F, 0, 3)
F_flat = F.reshape(-1, c)
if masks is not None and masks[i] is not None:
mask = masks[i]
assert mask.shape == F.shape[:2]
F_flat = F_flat[mask.reshape(-1)]
flatten.append(F_flat)
flatten = np.concatenate(flatten, axis=0)
flatten = normalize(flatten)
pca = PCA(n_components=3)
if skip > 1:
pca.fit(flatten[::skip])
flatten = pca.transform(flatten)
else:
flatten = pca.fit_transform(flatten)
flatten = (normalize(flatten) + 1) / 2
Fs_rgb = []
for i, F in enumerate(Fs):
h, w = F.shape[-2:]
if masks is None or masks[i] is None:
F_rgb, flatten = np.split(flatten, [h * w], axis=0)
F_rgb = F_rgb.reshape((h, w, 3))
else:
F_rgb = np.zeros((h, w, 3))
indices = np.where(masks[i])
F_rgb[indices], flatten = np.split(flatten, [len(indices[0])], axis=0)
F_rgb = np.concatenate([F_rgb, masks[i][..., None]], axis=-1)
Fs_rgb.append(F_rgb)
assert flatten.shape[0] == 0, flatten.shape
return Fs_rgb
def one_hot_argmax_to_rgb(y, num_class):
'''
Args:
probs: (B, C, H, W)
num_class: int
0: road 0
1: crossing 1
2: explicit_pedestrian 2
4: building
6: terrain
7: parking `
'''
class_colors = {
'road': (68, 68, 68), # 0: Black
'crossing': (244, 162, 97), # 1; Red
'explicit_pedestrian': (233, 196, 106), # 2: Yellow
# 'explicit_void': (128, 128, 128), # 3: White
'building': (231, 111, 81), # 5: Magenta
'terrain': (42, 157, 143), # 7: Cyan
'parking': (204, 204, 204), # 8: Dark Grey
'predicted_void': (255, 255, 255)
}
class_colors = class_colors.values()
class_colors = [torch.tensor(x).float() for x in class_colors]
threshold = 0.25
argmaxed = torch.argmax((y > threshold).float(), dim=1) # Take argmax
argmaxed[torch.all(y <= threshold, dim=1)] = num_class
# print(argmaxed.shape)
seg_rgb = torch.ones(
(
argmaxed.shape[0],
3,
argmaxed.shape[1],
argmaxed.shape[2],
)
) * 255
for i in range(num_class + 1):
seg_rgb[:, 0, :, :][argmaxed == i] = class_colors[i][0]
seg_rgb[:, 1, :, :][argmaxed == i] = class_colors[i][1]
seg_rgb[:, 2, :, :][argmaxed == i] = class_colors[i][2]
return seg_rgb
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
adaptive: whether the figure size should fit the image aspect ratios.
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
if adaptive:
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H
else:
ratios = [4 / 3] * n
figsize = [sum(ratios) * 4.5, 4.5]
fig, ax = plt.subplots(
1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
)
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
# Create legend
class_colors = {
'Road': (68, 68, 68), # 0: Black
'Crossing': (244, 162, 97), # 1; Red
'Sidewalk': (233, 196, 106), # 2: Yellow
'Building': (231, 111, 81), # 5: Magenta
'Terrain': (42, 157, 143), # 7: Cyan
'Parking': (204, 204, 204), # 8: Dark Grey
}
patches = [mpatches.Patch(color=[c/255.0 for c in color], label=label) for label, color in class_colors.items()]
plt.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3)
fig.tight_layout(pad=pad)