File size: 23,457 Bytes
f978308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Inspiration from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization

import whisper
import datetime
import subprocess
import gradio as gr
from pathlib import Path
import pandas as pd
import re
import time
import os 
import numpy as np
from sklearn.cluster import AgglomerativeClustering

from pytube import YouTube
import torch
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment

from gpuinfo import GPUInfo

import wave
import contextlib
from transformers import pipeline
import psutil

from zipfile import ZipFile
from io import StringIO
import csv

# ---- Model Loading ----

whisper_models = ["base", "small", "medium", "large"]
source_languages = {
    "en": "English",
    "de": "German",
    "es": "Spanish",
    "fr": "French",
}

source_language_list = [key[0] for key in source_languages.items()]

MODEL_NAME = "openai/whisper-small"
lang = "en"

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

embedding_model = PretrainedSpeakerEmbedding( 
    "speechbrain/spkrec-ecapa-voxceleb",
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))

# ---- S2T & Speaker diarization ----

def transcribe(microphone, file_upload):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    text = pipe(file)["text"]

    return warn_output + text


def convert_time(secs):
    return datetime.timedelta(seconds=round(secs))

def convert_to_wav(filepath):
    _,file_ending = os.path.splitext(f'{filepath}')
    audio_file = filepath.replace(file_ending, ".wav")
    print("starting conversion to wav")
    os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
    return audio_file


def speech_to_text(microphone, file_upload, selected_source_lang, whisper_model, num_speakers):
    """
    # Transcribe audio file and separate into segment, assign speakers to segments
    1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
    2. Generating speaker embeddings for each segments.
    3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
    
    Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
    Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
    """
    
    model = whisper.load_model(whisper_model)
    time_start = time.time()

    try:
        # Read and convert audio file
        warn_output = ""
        if (microphone is not None) and (file_upload is not None):
            warn_output = (
                "WARNING: You've uploaded an audio file and used the microphone. "
                "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
            )

        elif (microphone is None) and (file_upload is None):
            return "ERROR: You have to either use the microphone or upload an audio file"

        file = microphone if microphone is not None else file_upload
        
        if microphone is None and file_upload is not None:
            file = convert_to_wav(file)
        
        # Get duration
        with contextlib.closing(wave.open(file,'r')) as f:
            frames = f.getnframes()
            rate = f.getframerate()
            duration = frames / float(rate)
        print(f"conversion to wav ready, duration of audio file: {duration}")

        # Transcribe audio
        options = dict(language=selected_source_lang, beam_size=3, best_of=3)
        transcribe_options = dict(task="transcribe", **options)
        result = model.transcribe(file, **transcribe_options)
        segments = result["segments"]
        print("whisper done with transcription")
    except Exception as e:
        raise RuntimeError("Error converting audio file")

    try:
        # Create embedding
        def segment_embedding(segment):
            audio = Audio()
            start = segment["start"]
            # Whisper overshoots the end timestamp in the last segment
            end = min(duration, segment["end"])
            clip = Segment(start, end)
            waveform, sample_rate = audio.crop(file, clip)
            return embedding_model(waveform[None])

        embeddings = np.zeros(shape=(len(segments), 192))
        for i, segment in enumerate(segments):
            embeddings[i] = segment_embedding(segment)
        embeddings = np.nan_to_num(embeddings)
        print(f'Embedding shape: {embeddings.shape}')

        # Assign speaker label
        if num_speakers == 1:
            for i in range(len(segments)):
                segments[i]["speaker"] = 'SPEAKER 1'
        else:
            clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
            labels = clustering.labels_
            for i in range(len(segments)):
                segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)

        # Make output
        objects = {
            'Start' : [],
            'End': [],
            'Speaker': [],
            'Text': []
        }
        text = ''
        if num_speakers == 1:
            objects['Start'].append(str(convert_time(segment["start"])))
            objects['Speaker'].append(segment["speaker"])
            for (i, segment) in enumerate(segments):
                text += segment["text"] + ' '
            objects['Text'].append(text)
            objects['End'].append(str(convert_time(segment["end"])))
        else:
            for (i, segment) in enumerate(segments):
                if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
                    objects['Start'].append(str(convert_time(segment["start"])))
                    objects['Speaker'].append(segment["speaker"])
                    if i != 0:
                        objects['End'].append(str(convert_time(segments[i - 1]["end"])))
                        objects['Text'].append(text)
                        text = ''
                text += segment["text"] + ' '
            objects['End'].append(str(convert_time(segments[i - 1]["end"])))
            objects['Text'].append(text)
        
        time_end = time.time()
        time_diff = time_end - time_start
        memory = psutil.virtual_memory()
        gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
        gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
        gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
        system_info = f"""
        *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* 
        *Processing time: {time_diff:.5} seconds.*
        *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
        """

        return pd.DataFrame(objects), system_info
    
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)

# ---- Youtube Conversion ----

def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    print("Success download video")
    print(abs_video_path)
    return abs_video_path



def yt_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
    """
    # Transcribe youtube link using OpenAI Whisper
    1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
    2. Generating speaker embeddings for each segments.
    3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
    
    Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
    Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
    """
    
    model = whisper.load_model(whisper_model)
    time_start = time.time()
    if(video_file_path == None):
        raise ValueError("Error no video input")
    print(video_file_path)

    try:
        # Read and convert youtube video
        _,file_ending = os.path.splitext(f'{video_file_path}')
        print(f'file ending is {file_ending}')
        audio_file = video_file_path.replace(file_ending, ".wav")
        print("starting conversion to wav")
        os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
        
        # Get duration
        with contextlib.closing(wave.open(audio_file,'r')) as f:
            frames = f.getnframes()
            rate = f.getframerate()
            duration = frames / float(rate)
        print(f"conversion to wav ready, duration of audio file: {duration}")

        # Transcribe audio
        options = dict(language=selected_source_lang, beam_size=5, best_of=5)
        transcribe_options = dict(task="transcribe", **options)
        result = model.transcribe(audio_file, **transcribe_options)
        segments = result["segments"]
        print("starting whisper done with whisper")
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    try:
        # Create embedding
        def segment_embedding(segment):
            audio = Audio()
            start = segment["start"]
            # Whisper overshoots the end timestamp in the last segment
            end = min(duration, segment["end"])
            clip = Segment(start, end)
            waveform, sample_rate = audio.crop(audio_file, clip)
            return embedding_model(waveform[None])

        embeddings = np.zeros(shape=(len(segments), 192))
        for i, segment in enumerate(segments):
            embeddings[i] = segment_embedding(segment)
        embeddings = np.nan_to_num(embeddings)
        print(f'Embedding shape: {embeddings.shape}')

        # Assign speaker label
        if num_speakers == 1:
            for i in range(len(segments)):
                segments[i]["speaker"] = 'SPEAKER 1'
        else:
            clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
            labels = clustering.labels_
            for i in range(len(segments)):
                segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)

        # Make output
        objects = {
            'Start' : [],
            'End': [],
            'Speaker': [],
            'Text': []
        }
        text = ''
        if num_speakers == 1:
            objects['Start'].append(str(convert_time(segment["start"])))
            objects['Speaker'].append(segment["speaker"])
            for (i, segment) in enumerate(segments):
                text += segment["text"] + ' '
            objects['Text'].append(text)
            objects['End'].append(str(convert_time(segment["end"])))
        else:
            for (i, segment) in enumerate(segments):
                if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
                    objects['Start'].append(str(convert_time(segment["start"])))
                    objects['Speaker'].append(segment["speaker"])
                    if i != 0:
                        objects['End'].append(str(convert_time(segments[i - 1]["end"])))
                        objects['Text'].append(text)
                        text = ''
                text += segment["text"] + ' '
            objects['End'].append(str(convert_time(segments[i - 1]["end"])))
            objects['Text'].append(text)
        
        time_end = time.time()
        time_diff = time_end - time_start
        memory = psutil.virtual_memory()
        gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
        gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
        gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
        system_info = f"""
        *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* 
        *Processing time: {time_diff:.5} seconds.*
        *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
        """

        return pd.DataFrame(objects), system_info
    
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)

def download_csv(dataframe: pd.DataFrame):
    compression_options = dict(method='zip', archive_name='output.csv')
    dataframe.to_csv('output.zip', index=False, compression=compression_options)  
    return 'output.zip'

# ---- Gradio Layout ----
# Inspiration from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization

# -- General Functions --
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
memory = psutil.virtual_memory()
title = "Whisper speaker diarization & speech recognition"
interface = gr.Blocks(title=title)
interface.encrypt = False

# -- Functions Audio Input --
microphone_in = gr.inputs.Audio(source="microphone", 
                                type="filepath", 
                                optional=True)

upload_in = gr.inputs.Audio(source="upload", 
                            type="filepath", 
                            optional=True)

selected_source_lang_audio = gr.Dropdown(choices=source_language_list, 
                                         type="value", 
                                         value="en", 
                                         label="Spoken language in audio", 
                                         interactive=True)

selected_whisper_model_audio = gr.Dropdown(choices=whisper_models, 
                                           type="value", 
                                           value="base", 
                                           label="Selected Whisper model", 
                                           interactive=True)

number_speakers_audio = gr.Number(precision=0, 
                                  value=2, 
                                  label="Selected number of speakers", 
                                  interactive=True)

system_info_audio = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")

transcription_df_audio = gr.DataFrame(value=df_init,
                                      label="Transcription dataframe", 
                                      row_count=(0, "dynamic"), 
                                      max_rows = 10, 
                                      wrap=True, 
                                      overflow_row_behaviour='paginate')

csv_download_audio = gr.outputs.File(label="Download CSV")

# -- Functions Video Input --
video_in = gr.Video(label="Video file", 
                    mirror_webcam=False)

youtube_url_in = gr.Textbox(label="Youtube url", 
                            lines=1, 
                            interactive=True)

selected_source_lang_yt = gr.Dropdown(choices=source_language_list, 
                                      type="value", 
                                      value="en", 
                                      label="Spoken language in audio", 
                                      interactive=True)

selected_whisper_model_yt = gr.Dropdown(choices=whisper_models, 
                                        type="value", 
                                        value="base", 
                                        label="Selected Whisper model", 
                                        interactive=True)

number_speakers_yt = gr.Number(precision=0, 
                               value=2, 
                               label="Selected number of speakers", 
                               interactive=True)

system_info_yt = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")

transcription_df_yt = gr.DataFrame(value=df_init,
                                   label="Transcription dataframe", 
                                   row_count=(0, "dynamic"), 
                                   max_rows = 10, 
                                   wrap=True, 
                                   overflow_row_behaviour='paginate')

csv_download_yt = gr.outputs.File(label="Download CSV")

with interface:
    with gr.Tab("Whisper speaker diarization & speech recognition"):
        gr.Markdown('''
            <div>
            <h1 style='text-align: center'>Whisper speaker diarization & speech recognition</h1>
            This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> to recoginze the speech and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers</h2>
            </div>
        ''')

        with gr.Row():
            gr.Markdown('''
            ### Transcribe youtube link using OpenAI Whisper
            ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
            ##### 2. Generating speaker embeddings for each segments.
            ##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
            ''')             

        with gr.Row():
            with gr.Column():
                microphone_in.render()
                upload_in.render()
                with gr.Column():
                    gr.Markdown('''
                    ##### Here you can start the transcription process.
                    ##### Please select the source language for transcription.
                    ##### You should select a number of speakers for getting better results.
                    ''')
                selected_source_lang_audio.render()
                selected_whisper_model_audio.render()
                number_speakers_audio.render()
                transcribe_btn = gr.Button("Transcribe audio and initiate diarization")
                transcribe_btn.click(speech_to_text, 
                                    [
                                        microphone_in,
                                        upload_in,
                                        selected_source_lang_audio,
                                        selected_whisper_model_audio,
                                        number_speakers_audio
                                    ],
                                    [
                                        transcription_df_audio,
                                        system_info_audio
                                    ])

                
        with gr.Row():
            gr.Markdown('''
            ##### Here you will get transcription  output
            ##### ''')
            

        with gr.Row():
            with gr.Column():
                transcription_df_audio.render()
                system_info_audio.render()
        
        with gr.Row():
            with gr.Column():
                download_btn = gr.Button("Download transcription dataframe")
                download_btn.click(download_csv, transcription_df_audio, csv_download_audio)
                csv_download_audio.render()
            
        with gr.Row():
            gr.Markdown('''Chair of Data Science and Natural Language Processing - University of St. Gallen''')
    
    with gr.Tab("Youtube Speech to Text"):
        with gr.Row():
            gr.Markdown('''
                        <div>
                        <h1 style='text-align: center'>Youtube Speech Recognition & Speaker Diarization</h1>
                        </div>
                        ''')
            
        with gr.Row():
            gr.Markdown('''
                        ### Transcribe Youtube link
                        #### Test with the following examples:
                        ''')
            examples = gr.Examples(examples = 
                                   [
                                       "https://www.youtube.com/watch?v=vnc-Q8V4ihQ",
                                       "https://www.youtube.com/watch?v=_B60aTHCE5E",
                                       "https://www.youtube.com/watch?v=4BdKZxD-ziA",
                                       "https://www.youtube.com/watch?v=4ezBjAW26Js",
                                   ],
                                   label="Examples UNISG",
                                   inputs=[youtube_url_in])
        
        with gr.Row():
            with gr.Column():
                youtube_url_in.render()
                download_youtube_btn = gr.Button("Download Youtube video")
                download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in])
                print(video_in)
        
        with gr.Row():
            with gr.Column():
                video_in.render()
                with gr.Column():
                    gr.Markdown('''
                                #### Start the transcription process.
                                #### To initiate, please select the source language for transcription.
                                #### For better performance select the number of speakers.
                                ''')
                selected_source_lang_yt.render()
                selected_whisper_model_yt.render()
                number_speakers_yt.render()
                transcribe_btn = gr.Button("Transcribe audio and initiate diarization")
                transcribe_btn.click(yt_to_text, 
                                    [
                                        video_in,
                                        selected_source_lang_yt,
                                        selected_whisper_model_yt,
                                        number_speakers_yt
                                    ],
                                    [
                                        transcription_df_yt,
                                        system_info_yt
                                    ])
        
        with gr.Row():
            gr.Markdown('''
                        #### Here you will get transcription  output
                        #### ''')
        
        with gr.Row():
            with gr.Column():
                transcription_df_yt.render()
                system_info_yt.render()

        with gr.Row():
            with gr.Column():
                download_btn = gr.Button("Download transcription dataframe")
                download_btn.click(download_csv, transcription_df_audio, csv_download_yt)
                csv_download_yt.render()
        
        with gr.Row():
            gr.Markdown('''Chair of Data Science and Natural Language Processing - University of St. Gallen''')


def main():
    interface.launch()


if __name__ == "__main__":
    main()