Marcela Malaver commited on
Commit
c71d9bd
0 Parent(s):

Upload demo about teeth segmentation

Browse files
Files changed (6) hide show
  1. .gitattributes +38 -0
  2. .gitignore +1 -0
  3. README.md +37 -0
  4. app.py +103 -0
  5. requirements.txt +78 -0
  6. requirements_basic.txt +7 -0
.gitattributes ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ teeth_1.png filter=lfs diff=lfs merge=lfs -text
37
+ teeth_2.png filter=lfs diff=lfs merge=lfs -text
38
+ teeth_3.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ env/*
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Streamlit Teeth Segmentation
3
+ emoji: 🌖
4
+ colorFrom: purple
5
+ colorTo: red
6
+ sdk: streamlit
7
+ sdk_version: 1.30.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+
16
+ Steps to run locally:
17
+ ```
18
+ python3 -m venv env # To create an env
19
+ source env/bin/activate # To activate the env
20
+ pip3 install -r requirements.txt # To download packages needed
21
+ streamlit run app.py # To run the app
22
+ deactivate # To leave the env
23
+ ```
24
+
25
+ Some useful commands:
26
+ ```
27
+ pip3 install streamlit # Only the first time
28
+ pip3 install torch # Only the first time
29
+ pip3 freeze > requirements.txt # To export the libraries to a file
30
+ ```
31
+
32
+ If you have issues with git push:
33
+ ```
34
+ git remote get-url origin # Copy this value and then change according the next line
35
+ git remote set-url origin https://<user_name>:<token>@huggingface.co/<repo_path> # ex. git remote set-url origin https://marcela9409:valid_token@huggingface.co/spaces/marcela9409/streamlit-teeth-segmentation
36
+ git push
37
+ ```
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import numpy as np
4
+ import cv2
5
+ from huggingface_hub import from_pretrained_keras
6
+
7
+ st.header("X-ray segmentation of teeth / Segmentación de dientes con rayos X")
8
+ st.subheader("Iteration to improve demo / Iteración para mejorar la demo")
9
+
10
+ st.markdown(
11
+ """
12
+ Demo for Platzi class / Demo para la clase de Platzi
13
+ """
14
+ )
15
+
16
+ ## Seleccionamos y cargamos el modelo
17
+ model_id = "SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net"
18
+ model = from_pretrained_keras(model_id)
19
+
20
+ ## Permitimos a la usuaria cargar una imagen
21
+ image_file = st.file_uploader("Upload your image here / Sube aquí tu imagen", type=["png", "jpg", "jpeg"])
22
+
23
+ ## Si una imagen tiene más de un canal entonces se convierte a escala de grises (1 canal)
24
+ def convert_one_channel(img):
25
+ if len(img.shape) > 2:
26
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
27
+ return img
28
+ else:
29
+ return img
30
+
31
+ def convertir_rgb(img):
32
+ if len(img.shape) == 2:
33
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
34
+ return img
35
+ else:
36
+ return img
37
+
38
+
39
+ ## Manipularemos la interfaz para que podamos usar imágenes ejemplo
40
+ ## Si el usuario da click en un ejemplo entonces el modelo correrá con él
41
+ examples = ["teeth_1.png", "teeth_2.png", "teeth_3.png"]
42
+
43
+ ## Creamos tres columnas; en cada una estará una imagen ejemplo
44
+ col1, col2, col3 = st.columns(3)
45
+ with col1:
46
+ ## Se carga la imagen y se muestra en la interfaz
47
+ ex = Image.open(examples[0])
48
+ st.image(ex, width=200)
49
+ ## Si oprime el botón entonces usaremos ese ejemplo en el modelo
50
+ if st.button("Run example 1 / Corre ejemplo 1"):
51
+ image_file = examples[0]
52
+
53
+ with col2:
54
+ ex1 = Image.open(examples[1])
55
+ st.image(ex1, width=200)
56
+ if st.button("Run example 2 / Corre ejemplo 2"):
57
+ image_file = examples[1]
58
+
59
+ with col3:
60
+ ex2 = Image.open(examples[2])
61
+ st.image(ex2, width=200)
62
+ if st.button("Run example 3 / Corre ejemplo 3"):
63
+ image_file = examples[2]
64
+
65
+ ## Si tenemos una imagen para ingresar en el modelo entonces
66
+ ## la procesamos e ingresamos al modelo
67
+ if image_file is not None:
68
+ ## Cargamos la imagen con PIL, la mostramos y la convertimos a un array de NumPy
69
+ img = Image.open(image_file)
70
+ st.image(img, width=850)
71
+ img = np.asarray(img)
72
+
73
+ ## Procesamos la imagen para ingresarla al modelo
74
+ img_cv = convert_one_channel(img)
75
+ img_cv = cv2.resize(img_cv, (512, 512), interpolation=cv2.INTER_LANCZOS4)
76
+ img_cv = np.float32(img_cv / 255)
77
+ img_cv = np.reshape(img_cv, (1, 512, 512, 1))
78
+
79
+ ## Ingresamos el array de NumPy al modelo
80
+ predicted = model.predict(img_cv)
81
+ predicted = predicted[0]
82
+
83
+ ## Regresamos la imagen a su forma original y agregamos las máscaras de la segmentación
84
+ predicted = cv2.resize(
85
+ predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4
86
+ )
87
+ mask = np.uint8(predicted * 255) #
88
+ _, mask = cv2.threshold(
89
+ mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY + cv2.THRESH_OTSU
90
+ )
91
+ kernel = np.ones((5, 5), dtype=np.float32)
92
+ mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
93
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1)
94
+ cnts, hieararch = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
95
+ output = cv2.drawContours(convert_one_channel(img.astype(np.uint8)), cnts, -1, (255, 0, 0), 3)
96
+
97
+ ## Si obtuvimos exitosamente un resultadod entonces lo mostramos en la interfaz
98
+ if output is not None:
99
+ st.subheader("Segmentation / Segmentación:")
100
+ st.write(output.shape)
101
+ st.image(output, width=850)
102
+
103
+ st.markdown("Thanks for use our demo! / Gracias por usar esta demo")
requirements.txt ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==2.1.0
2
+ altair==5.2.0
3
+ astunparse==1.6.3
4
+ attrs==23.2.0
5
+ blinker==1.7.0
6
+ cachetools==5.3.2
7
+ certifi==2023.11.17
8
+ charset-normalizer==3.3.2
9
+ click==8.1.7
10
+ filelock==3.13.1
11
+ flatbuffers==23.5.26
12
+ fsspec==2023.12.2
13
+ gast==0.5.4
14
+ gitdb==4.0.11
15
+ GitPython==3.1.41
16
+ google-auth==2.27.0
17
+ google-auth-oauthlib==1.2.0
18
+ google-pasta==0.2.0
19
+ grpcio==1.60.0
20
+ h5py==3.10.0
21
+ huggingface-hub==0.20.3
22
+ idna==3.6
23
+ importlib-metadata==7.0.1
24
+ Jinja2==3.1.3
25
+ jsonschema==4.21.1
26
+ jsonschema-specifications==2023.12.1
27
+ keras==2.15.0
28
+ libclang==16.0.6
29
+ Markdown==3.5.2
30
+ markdown-it-py==3.0.0
31
+ MarkupSafe==2.1.4
32
+ mdurl==0.1.2
33
+ ml-dtypes==0.2.0
34
+ numpy==1.26.3
35
+ oauthlib==3.2.2
36
+ opencv-python==4.9.0.80
37
+ opt-einsum==3.3.0
38
+ packaging==23.2
39
+ pandas==2.2.0
40
+ pillow==10.2.0
41
+ protobuf==4.23.4
42
+ pyarrow==15.0.0
43
+ pyasn1==0.5.1
44
+ pyasn1-modules==0.3.0
45
+ pydeck==0.8.1b0
46
+ Pygments==2.17.2
47
+ python-dateutil==2.8.2
48
+ pytz==2023.3.post1
49
+ PyYAML==6.0.1
50
+ referencing==0.32.1
51
+ requests==2.31.0
52
+ requests-oauthlib==1.3.1
53
+ rich==13.7.0
54
+ rpds-py==0.17.1
55
+ rsa==4.9
56
+ scipy==1.12.0
57
+ six==1.16.0
58
+ smmap==5.0.1
59
+ streamlit==1.30.0
60
+ tenacity==8.2.3
61
+ tensorboard==2.15.1
62
+ tensorboard-data-server==0.7.2
63
+ tensorflow==2.15.0
64
+ tensorflow-estimator==2.15.0
65
+ tensorflow-io-gcs-filesystem==0.35.0
66
+ termcolor==2.4.0
67
+ toml==0.10.2
68
+ toolz==0.12.1
69
+ tornado==6.4
70
+ tqdm==4.66.1
71
+ typing_extensions==4.9.0
72
+ tzdata==2023.4
73
+ tzlocal==5.2
74
+ urllib3==2.1.0
75
+ validators==0.22.0
76
+ Werkzeug==3.0.1
77
+ wrapt==1.14.1
78
+ zipp==3.17.0
requirements_basic.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ numpy
2
+ Pillow
3
+ scipy
4
+ opencv-python
5
+ tensorflow
6
+ streamlit
7
+ huggingface_hub