File size: 1,490 Bytes
aea6ff4 3702ace aea6ff4 b0b0ba6 3702ace 3657834 aea6ff4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli")
def sequence_to_classify(sequence, labels):
#sequence_to_classify = 'Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.'
#candidate_labels = ['politikk', 'helse', 'sport', 'religion']
hypothesis_template = 'Dette eksempelet er {}.'
#classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True)
return classifier(sequence, labels, hypothesis_template=hypothesis_template, multi_class=True)
def greet(name):
return "Hello " + name + "!!"
iface = gr.Interface(
title = "Zero-shot Classification of Norwegian Text",
description = "Demo of zero-shot classification using NB-Bert base model (Norwegian).",
fn=sequence_to_classify,
inputs=[gr.inputs.Textbox(lines=2,
label="Write a norwegian text you would like to classify...",
placeholder="Text here..."),
gr.inputs.Textbox(lines=2,
label="Possible candidate labels",
placeholder="labels here...")],
outputs=gr.outputs.Label(num_top_classes=3),
capture_session=True,
interpretation="default"
,examples=[[("Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september."), ("['politikk', 'helse', 'sport', 'religion']")])
iface.launch() |