Spaces:
Running
on
T4
Running
on
T4
import argparse | |
import gradio as gr | |
from PIL import Image | |
import os | |
import torch | |
import numpy as np | |
import yaml | |
from huggingface_hub import hf_hub_download | |
#from gradio_imageslider import ImageSlider | |
## local code | |
from models import instructir | |
from text.models import LanguageModel, LMHead | |
def dict2namespace(config): | |
namespace = argparse.Namespace() | |
for key, value in config.items(): | |
if isinstance(value, dict): | |
new_value = dict2namespace(value) | |
else: | |
new_value = value | |
setattr(namespace, key, new_value) | |
return namespace | |
hf_hub_download(repo_id="marcosv/InstructIR", filename="im_instructir-7d.pt", local_dir="./") | |
hf_hub_download(repo_id="marcosv/InstructIR", filename="lm_instructir-7d.pt", local_dir="./") | |
CONFIG = "configs/eval5d.yml" | |
LM_MODEL = "lm_instructir-7d.pt" | |
MODEL_NAME = "im_instructir-7d.pt" | |
# parse config file | |
with open(os.path.join(CONFIG), "r") as f: | |
config = yaml.safe_load(f) | |
cfg = dict2namespace(config) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = instructir.create_model(input_channels =cfg.model.in_ch, width=cfg.model.width, enc_blks = cfg.model.enc_blks, | |
middle_blk_num = cfg.model.middle_blk_num, dec_blks = cfg.model.dec_blks, txtdim=cfg.model.textdim) | |
model = model.to(device) | |
print ("IMAGE MODEL CKPT:", MODEL_NAME) | |
model.load_state_dict(torch.load(MODEL_NAME, map_location="cpu"), strict=True) | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
LMODEL = cfg.llm.model | |
language_model = LanguageModel(model=LMODEL) | |
lm_head = LMHead(embedding_dim=cfg.llm.model_dim, hidden_dim=cfg.llm.embd_dim, num_classes=cfg.llm.nclasses) | |
lm_head = lm_head.to(device) | |
print("LMHEAD MODEL CKPT:", LM_MODEL) | |
lm_head.load_state_dict(torch.load(LM_MODEL, map_location="cpu"), strict=True) | |
def load_img (filename, norm=True,): | |
img = np.array(Image.open(filename).convert("RGB")) | |
if norm: | |
img = img / 255. | |
img = img.astype(np.float32) | |
return img | |
def process_img (image, prompt): | |
img = np.array(image) | |
img = img / 255. | |
img = img.astype(np.float32) | |
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) | |
lm_embd = language_model(prompt) | |
lm_embd = lm_embd.to(device) | |
with torch.no_grad(): | |
text_embd, deg_pred = lm_head (lm_embd) | |
x_hat = model(y, text_embd) | |
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() | |
restored_img = np.clip(restored_img, 0. , 1.) | |
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 | |
return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img)) | |
title = "InstructIR βοΈπΌοΈ π€" | |
description = ''' ## [High-Quality Image Restoration Following Human Instructions](https://arxiv.org/abs/2401.16468) | |
[Marcos V. Conde](https://mv-lab.github.io/), [Gregor Geigle](https://scholar.google.com/citations?user=uIlyqRwAAAAJ&hl=en), [Radu Timofte](https://scholar.google.com/citations?user=u3MwH5kAAAAJ&hl=en) | |
*Computer Vision Lab, University of Wuerzburg | Sony PlayStation, FTG* | |
### TL;DR: quickstart | |
***InstructIR takes as input an image and a human-written instruction for how to improve that image.*** | |
The (single) neural model performs all-in-one image restoration. InstructIR achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement. | |
**π You can start with the [demo tutorial.](https://github.com/mv-lab/InstructIR/blob/main/demo.ipynb)** Check **[our github](https://github.com/mv-lab/InstructIR)** for more information | |
<details> | |
<summary> <b> Abstract</b> (click me to read)</summary> | |
<p> | |
Image restoration is a fundamental problem that involves recovering a high-quality clean image from its degraded observation. All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model. In this work, we present the first approach that uses human-written instructions to guide the image restoration model. Given natural language prompts, our model can recover high-quality images from their degraded counterparts, considering multiple degradation types. Our method, InstructIR, achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement. InstructIR improves +1dB over previous all-in-one restoration methods. Moreover, our dataset and results represent a novel benchmark for new research on text-guided image restoration and enhancement. | |
</p> | |
</details> | |
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K). <br> | |
**The model was trained using mostly synthetic data, thus it might not work great on real-world complex images.** | |
You can also try general image enhancement prompts (e.g., "retouch this image", "enhance the colors") and see how it improves the colors. As you can see, the model is quite efficient. | |
**Datasets:** We use these datasets BSD100, BSD68, Urban100, WED, Rain100, Aobe MIT5K, LOL, GoPro, SOTS (haze). This demo expects an image with some degradations (blur, noise, rain, low-light, haze). | |
<br> | |
<code> | |
@article{conde2024high, | |
title={High-Quality Image Restoration Following Human Instructions}, | |
author={Conde, Marcos V and Geigle, Gregor and Timofte, Radu}, | |
journal={arXiv preprint arXiv:2401.16468}, | |
year={2024} | |
} | |
</code> | |
<br> | |
''' | |
article = ''' | |
<p style='text-align: center'> Check our code, models and results at: <a href='https://github.com/mv-lab/InstructIR' target='_blank'>https://github.com/mv-lab/InstructIR</a></p> | |
<p style='text-align: center'> Read the full paper at: <a href='https://arxiv.org/abs/2401.16468' target='_blank'>High-Quality Image Restoration Following Human Instructions</a></p> | |
<p style='text-align: center'> Consider citing our work if you use it, or you find it insightful </p> | |
''' | |
#### Image,Prompts examples | |
examples = [['images/a4960.jpg', "my colors are too off, make it pop so I can use it in instagram"], | |
['images/rain-020.png', "I love this photo, could you remove the raindrops? please keep the content intact"], | |
['images/gradio_demo_images/city.jpg', "I took this photo during a foggy day, can you improve it?"], | |
['images/gradio_demo_images/frog.png', "can you remove the tiny dots in the image? it is very unpleasant"], | |
["images/lol_748.png", "my image is too dark, I cannot see anything, can you fix it?"], | |
["images/lol_22.png", "Increase the brightness of my photo please, I want to see totoro"], | |
["images/gopro.png", "I took this photo while I was running, can you stabilize the image? it is too blurry"], | |
["images/GOPR0871_11_00-000075-min.png", "Correct the motion blur in this image so it is more clear"], | |
["images/a0010.jpg", "please I want this image for my photo album, can you edit it as a photographer"], | |
["images/real_fog.png", "How can I remove the fog and mist from this photo?"] | |
] | |
css = """ | |
.image-frame img, .image-container img { | |
width: auto; | |
height: auto; | |
max-width: none; | |
} | |
""" | |
demo = gr.Interface( | |
fn=process_img, | |
inputs=[ | |
gr.Image(type="pil", label="Input", value="images/a4960.jpg"), | |
gr.Text(label="Prompt", value="my colors are too off, make it pop so I can use it in instagram") | |
], | |
outputs=[gr.Image(type="pil", label="Ouput")], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
) | |
if __name__ == "__main__": | |
demo.launch() |