Spaces:
Running
on
T4
Running
on
T4
# ------------------------------------------------------------------------ | |
# Copyright (c) 2022 megvii-model. All Rights Reserved. | |
# ------------------------------------------------------------------------ | |
# Source: https://github.com/megvii-research/NAFNet | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
class LayerNormFunction(torch.autograd.Function): | |
def forward(ctx, x, weight, bias, eps): | |
ctx.eps = eps | |
N, C, H, W = x.size() | |
mu = x.mean(1, keepdim=True) | |
var = (x - mu).pow(2).mean(1, keepdim=True) | |
y = (x - mu) / (var + eps).sqrt() | |
ctx.save_for_backward(y, var, weight) | |
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) | |
return y | |
def backward(ctx, grad_output): | |
eps = ctx.eps | |
N, C, H, W = grad_output.size() | |
y, var, weight = ctx.saved_variables | |
g = grad_output * weight.view(1, C, 1, 1) | |
mean_g = g.mean(dim=1, keepdim=True) | |
mean_gy = (g * y).mean(dim=1, keepdim=True) | |
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) | |
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( | |
dim=0), None | |
class LayerNorm2d(nn.Module): | |
def __init__(self, channels, eps=1e-6): | |
super(LayerNorm2d, self).__init__() | |
self.register_parameter('weight', nn.Parameter(torch.ones(channels))) | |
self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) | |
self.eps = eps | |
def forward(self, x): | |
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) | |
class AvgPool2d(nn.Module): | |
def __init__(self, kernel_size=None, base_size=None, auto_pad=True, fast_imp=False, train_size=None): | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.base_size = base_size | |
self.auto_pad = auto_pad | |
# only used for fast implementation | |
self.fast_imp = fast_imp | |
self.rs = [5, 4, 3, 2, 1] | |
self.max_r1 = self.rs[0] | |
self.max_r2 = self.rs[0] | |
self.train_size = train_size | |
def extra_repr(self) -> str: | |
return 'kernel_size={}, base_size={}, stride={}, fast_imp={}'.format( | |
self.kernel_size, self.base_size, self.kernel_size, self.fast_imp | |
) | |
def forward(self, x): | |
if self.kernel_size is None and self.base_size: | |
train_size = self.train_size | |
if isinstance(self.base_size, int): | |
self.base_size = (self.base_size, self.base_size) | |
self.kernel_size = list(self.base_size) | |
self.kernel_size[0] = x.shape[2] * self.base_size[0] // train_size[-2] | |
self.kernel_size[1] = x.shape[3] * self.base_size[1] // train_size[-1] | |
# only used for fast implementation | |
self.max_r1 = max(1, self.rs[0] * x.shape[2] // train_size[-2]) | |
self.max_r2 = max(1, self.rs[0] * x.shape[3] // train_size[-1]) | |
if self.kernel_size[0] >= x.size(-2) and self.kernel_size[1] >= x.size(-1): | |
return F.adaptive_avg_pool2d(x, 1) | |
if self.fast_imp: # Non-equivalent implementation but faster | |
h, w = x.shape[2:] | |
if self.kernel_size[0] >= h and self.kernel_size[1] >= w: | |
out = F.adaptive_avg_pool2d(x, 1) | |
else: | |
r1 = [r for r in self.rs if h % r == 0][0] | |
r2 = [r for r in self.rs if w % r == 0][0] | |
# reduction_constraint | |
r1 = min(self.max_r1, r1) | |
r2 = min(self.max_r2, r2) | |
s = x[:, :, ::r1, ::r2].cumsum(dim=-1).cumsum(dim=-2) | |
n, c, h, w = s.shape | |
k1, k2 = min(h - 1, self.kernel_size[0] // r1), min(w - 1, self.kernel_size[1] // r2) | |
out = (s[:, :, :-k1, :-k2] - s[:, :, :-k1, k2:] - s[:, :, k1:, :-k2] + s[:, :, k1:, k2:]) / (k1 * k2) | |
out = torch.nn.functional.interpolate(out, scale_factor=(r1, r2)) | |
else: | |
n, c, h, w = x.shape | |
s = x.cumsum(dim=-1).cumsum_(dim=-2) | |
s = torch.nn.functional.pad(s, (1, 0, 1, 0)) # pad 0 for convenience | |
k1, k2 = min(h, self.kernel_size[0]), min(w, self.kernel_size[1]) | |
s1, s2, s3, s4 = s[:, :, :-k1, :-k2], s[:, :, :-k1, k2:], s[:, :, k1:, :-k2], s[:, :, k1:, k2:] | |
out = s4 + s1 - s2 - s3 | |
out = out / (k1 * k2) | |
if self.auto_pad: | |
n, c, h, w = x.shape | |
_h, _w = out.shape[2:] | |
# print(x.shape, self.kernel_size) | |
pad2d = ((w - _w) // 2, (w - _w + 1) // 2, (h - _h) // 2, (h - _h + 1) // 2) | |
out = torch.nn.functional.pad(out, pad2d, mode='replicate') | |
return out | |
def replace_layers(model, base_size, train_size, fast_imp, **kwargs): | |
for n, m in model.named_children(): | |
if len(list(m.children())) > 0: | |
## compound module, go inside it | |
replace_layers(m, base_size, train_size, fast_imp, **kwargs) | |
if isinstance(m, nn.AdaptiveAvgPool2d): | |
pool = AvgPool2d(base_size=base_size, fast_imp=fast_imp, train_size=train_size) | |
assert m.output_size == 1 | |
setattr(model, n, pool) | |
''' | |
ref. | |
@article{chu2021tlsc, | |
title={Revisiting Global Statistics Aggregation for Improving Image Restoration}, | |
author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin}, | |
journal={arXiv preprint arXiv:2112.04491}, | |
year={2021} | |
} | |
''' | |
class Local_Base(): | |
def convert(self, *args, train_size, **kwargs): | |
replace_layers(self, *args, train_size=train_size, **kwargs) | |
imgs = torch.rand(train_size) | |
with torch.no_grad(): | |
self.forward(imgs) |