# import gradio as gr # import numpy as np # import random # #import spaces #[uncomment to use ZeroGPU] # from diffusers import DiffusionPipeline # import torch # # device = "cuda" if torch.cuda.is_available() else "cpu" # model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use # # if torch.cuda.is_available(): # torch_dtype = torch.float16 # else: # torch_dtype = torch.float32 # # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) # pipe = pipe.to(device) # # MAX_SEED = np.iinfo(np.int32).max # MAX_IMAGE_SIZE = 1024 # # #@spaces.GPU #[uncomment to use ZeroGPU] # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): # # if randomize_seed: # seed = random.randint(0, MAX_SEED) # # generator = torch.Generator().manual_seed(seed) # # image = pipe( # prompt = prompt, # negative_prompt = negative_prompt, # guidance_scale = guidance_scale, # num_inference_steps = num_inference_steps, # width = width, # height = height, # generator = generator # ).images[0] # # return image, seed # # examples = [ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", # "An astronaut riding a green horse", # "A delicious ceviche cheesecake slice", # ] # # css=""" # #col-container { # margin: 0 auto; # max-width: 640px; # } # """ # # with gr.Blocks(css=css) as demo: # # with gr.Column(elem_id="col-container"): # gr.Markdown(f""" # # Text-to-Image Gradio Template # """) # # with gr.Row(): # # prompt = gr.Text( # label="Prompt", # show_label=False, # max_lines=1, # placeholder="Enter your prompt", # container=False, # ) # # run_button = gr.Button("Run", scale=0) # # result = gr.Image(label="Result", show_label=False) # # with gr.Accordion("Advanced Settings", open=False): # # negative_prompt = gr.Text( # label="Negative prompt", # max_lines=1, # placeholder="Enter a negative prompt", # visible=False, # ) # # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=MAX_SEED, # step=1, # value=0, # ) # # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # # with gr.Row(): # # width = gr.Slider( # label="Width", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=1024, #Replace with defaults that work for your model # ) # # height = gr.Slider( # label="Height", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=1024, #Replace with defaults that work for your model # ) # # with gr.Row(): # # guidance_scale = gr.Slider( # label="Guidance scale", # minimum=0.0, # maximum=10.0, # step=0.1, # value=0.0, #Replace with defaults that work for your model # ) # # num_inference_steps = gr.Slider( # label="Number of inference steps", # minimum=1, # maximum=50, # step=1, # value=2, #Replace with defaults that work for your model # ) # # gr.Examples( # examples = examples, # inputs = [prompt] # ) # gr.on( # triggers=[run_button.click, prompt.submit], # fn = infer, # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # outputs = [result, seed] # ) # # demo.queue().launch() import gradio as gr gr.load("models/nerijs/dark-fantasy-illustration-flux").launch()