margsli commited on
Commit
77bed18
·
verified ·
1 Parent(s): 60af332

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -71
app.py CHANGED
@@ -9,25 +9,19 @@ import numpy as np
9
  import pandas as pd
10
 
11
 
12
- basic_component_values = [None] * 6
13
  leader_component_values = [None]
 
14
 
15
  def make_default_md(arena_df, elo_results):
16
- total_votes = sum(arena_df["num_battles"]) // 2
17
- total_models = len(arena_df)
18
-
19
  leaderboard_md = f"""
20
  # NeurIPS LLM Merging Competition Leaderboard
21
- [Website](https://llm-merging.github.io/index) | [Starter Kit (Github)](https://github.com/llm-merging/LLM-Merging) | [Discord](https://discord.com/invite/dPBHEVnV) |
22
 
23
  """
24
  return leaderboard_md
25
 
26
-
27
  def make_arena_leaderboard_md(arena_df):
28
- total_votes = sum(arena_df["num_battles"]) // 2
29
  total_models = len(arena_df)
30
- space = "   "
31
  leaderboard_md = f"""
32
  Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**.
33
 
@@ -39,13 +33,10 @@ Total #models: **{total_models}**.{space} Last updated: June 1, 2024.
39
  return leaderboard_md
40
 
41
  def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
42
- total_votes = sum(arena_df["num_battles"]) // 2
43
  total_models = len(arena_df)
44
- space = "   "
45
- total_subset_votes = sum(arena_subset_df["num_battles"]) // 2
46
  total_subset_models = len(arena_subset_df)
47
  leaderboard_md = f"""### {cat_name_to_explanation[name]}
48
- #### [Coverage] {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
49
  """
50
  return leaderboard_md
51
 
@@ -59,43 +50,6 @@ Last updated: {elo_results["last_updated_datetime"]}
59
  return leaderboard_md
60
 
61
 
62
- def update_elo_components(max_num_files, elo_results_file):
63
- log_files = get_log_files(max_num_files)
64
-
65
- # Leaderboard
66
- if elo_results_file is None: # Do live update
67
- battles = clean_battle_data(log_files)
68
- elo_results = report_elo_analysis_results(battles)
69
- leader_component_values[0] = make_leaderboard_md_live(elo_results)
70
-
71
- # Basic stats
72
- basic_stats = report_basic_stats(log_files)
73
- md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
74
-
75
- md1 = "### Action Histogram\n"
76
- md1 += basic_stats["action_hist_md"] + "\n"
77
-
78
- md2 = "### Anony. Vote Histogram\n"
79
- md2 += basic_stats["anony_vote_hist_md"] + "\n"
80
-
81
- md3 = "### Model Call Histogram\n"
82
- md3 += basic_stats["model_hist_md"] + "\n"
83
-
84
- md4 = "### Model Call (Last 24 Hours)\n"
85
- md4 += basic_stats["num_chats_last_24_hours"] + "\n"
86
-
87
- basic_component_values[0] = md0
88
- basic_component_values[1] = basic_stats["chat_dates_bar"]
89
- basic_component_values[2] = md1
90
- basic_component_values[3] = md2
91
- basic_component_values[4] = md3
92
- basic_component_values[5] = md4
93
-
94
-
95
- def model_hyperlink(model_name, link):
96
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
97
-
98
-
99
  def load_leaderboard_table_csv(filename, add_hyperlink=False):
100
  lines = open(filename).readlines()
101
  heads = [v.strip() for v in lines[0].split(",")]
@@ -127,31 +81,10 @@ def load_leaderboard_table_csv(filename, add_hyperlink=False):
127
  v = np.nan
128
  item[h] = v
129
  if add_hyperlink:
130
- item["Model"] = model_hyperlink(item["Model"], item["Link"])
131
  rows.append(item)
132
-
133
  return rows
134
 
135
-
136
- def build_basic_stats_tab():
137
- empty = "Loading ..."
138
- basic_component_values[:] = [empty, None, empty, empty, empty, empty]
139
-
140
- md0 = gr.Markdown(empty)
141
- gr.Markdown("#### Figure 1: Number of model calls and votes")
142
- plot_1 = gr.Plot(show_label=False)
143
- with gr.Row():
144
- with gr.Column():
145
- md1 = gr.Markdown(empty)
146
- with gr.Column():
147
- md2 = gr.Markdown(empty)
148
- with gr.Row():
149
- with gr.Column():
150
- md3 = gr.Markdown(empty)
151
- with gr.Column():
152
- md4 = gr.Markdown(empty)
153
- return [md0, plot_1, md1, md2, md3, md4]
154
-
155
  def get_full_table(arena_df, model_table_df):
156
  values = []
157
  for i in range(len(model_table_df)):
 
9
  import pandas as pd
10
 
11
 
 
12
  leader_component_values = [None]
13
+ space = "&nbsp;&nbsp;&nbsp;"
14
 
15
  def make_default_md(arena_df, elo_results):
 
 
 
16
  leaderboard_md = f"""
17
  # NeurIPS LLM Merging Competition Leaderboard
18
+ [Website](https://llm-merging.github.io/index) | [Starter Kit (Github)](https://github.com/llm-merging/LLM-Merging) | [Discord](https://discord.com/invite/dPBHEVnV)
19
 
20
  """
21
  return leaderboard_md
22
 
 
23
  def make_arena_leaderboard_md(arena_df):
 
24
  total_models = len(arena_df)
 
25
  leaderboard_md = f"""
26
  Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**.
27
 
 
33
  return leaderboard_md
34
 
35
  def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
 
36
  total_models = len(arena_df)
 
 
37
  total_subset_models = len(arena_subset_df)
38
  leaderboard_md = f"""### {cat_name_to_explanation[name]}
39
+ #### [Coverage] {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)**{space}
40
  """
41
  return leaderboard_md
42
 
 
50
  return leaderboard_md
51
 
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  def load_leaderboard_table_csv(filename, add_hyperlink=False):
54
  lines = open(filename).readlines()
55
  heads = [v.strip() for v in lines[0].split(",")]
 
81
  v = np.nan
82
  item[h] = v
83
  if add_hyperlink:
84
+ item["Model"] = f'<a target="_blank" href="{item["Link"]}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{item["Model"]}</a>'
85
  rows.append(item)
 
86
  return rows
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  def get_full_table(arena_df, model_table_df):
89
  values = []
90
  for i in range(len(model_table_df)):