margsli commited on
Commit
c767360
Β·
verified Β·
1 Parent(s): 42ba245

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -13
app.py CHANGED
@@ -156,6 +156,8 @@ def get_full_table(model_table_df):
156
  values = []
157
  for i in range(len(model_table_df)):
158
  row = []
 
 
159
  model_key = model_table_df.iloc[i]["key"]
160
  model_name = model_table_df.iloc[i]["Model"]
161
  # model display name
@@ -163,10 +165,8 @@ def get_full_table(model_table_df):
163
  row.append(np.nan)
164
  row.append(np.nan)
165
  row.append(np.nan)\
166
- # Organization
167
- row.append(model_table_df.iloc[i]["Organization"])
168
- # license
169
- row.append(model_table_df.iloc[i]["License"])
170
 
171
  values.append(row)
172
  values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
@@ -222,8 +222,7 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
222
  "⭐ Task 1",
223
  "πŸ“ˆ Task 2",
224
  "πŸ“š Task 3",
225
- "Organization",
226
- "License",
227
  ],
228
  datatype=[
229
  "number",
@@ -232,12 +231,11 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
232
  "number",
233
  "number",
234
  "str",
235
- "str",
236
  ],
237
  value=arena_table_vals,
238
  elem_id="arena_leaderboard_dataframe",
239
  height=700,
240
- column_widths=[70, 190, 110, 110, 110, 150, 140],
241
  wrap=True,
242
  )
243
 
@@ -259,7 +257,7 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
259
  pass
260
 
261
  def update_leaderboard_df(arena_table_vals):
262
- elo_datarame = pd.DataFrame(arena_table_vals, columns=["Rank", "πŸ€– Model", "⭐ Task 1", "πŸ“ˆ Task 2", "πŸ“š Task 3", "Organization", "License"])
263
 
264
  # goal: color the rows based on the rank with styler
265
  def highlight_max(s):
@@ -286,8 +284,7 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
286
  "⭐ Task 1",
287
  "πŸ“ˆ Task 2",
288
  "πŸ“š Task 3",
289
- "Organization",
290
- "License",
291
  ],
292
  datatype=[
293
  "number",
@@ -296,12 +293,11 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
296
  "number",
297
  "number",
298
  "str",
299
- "str",
300
  ],
301
  value=arena_values,
302
  elem_id="arena_leaderboard_dataframe",
303
  height=700,
304
- column_widths=[70, 190, 110, 110, 110, 150, 140],
305
  wrap=True,
306
  )
307
  leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
 
156
  values = []
157
  for i in range(len(model_table_df)):
158
  row = []
159
+ ranking = arena_df.iloc[i].get("final_ranking") or i+1
160
+ row.append(ranking)
161
  model_key = model_table_df.iloc[i]["key"]
162
  model_name = model_table_df.iloc[i]["Model"]
163
  # model display name
 
165
  row.append(np.nan)
166
  row.append(np.nan)
167
  row.append(np.nan)\
168
+ # Team
169
+ row.append(model_table_df.iloc[i]["Team"])
 
 
170
 
171
  values.append(row)
172
  values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
 
222
  "⭐ Task 1",
223
  "πŸ“ˆ Task 2",
224
  "πŸ“š Task 3",
225
+ "Team",
 
226
  ],
227
  datatype=[
228
  "number",
 
231
  "number",
232
  "number",
233
  "str",
 
234
  ],
235
  value=arena_table_vals,
236
  elem_id="arena_leaderboard_dataframe",
237
  height=700,
238
+ column_widths=[70, 190, 110, 110, 110, 150],
239
  wrap=True,
240
  )
241
 
 
257
  pass
258
 
259
  def update_leaderboard_df(arena_table_vals):
260
+ elo_datarame = pd.DataFrame(arena_table_vals, columns=["Rank", "πŸ€– Model", "⭐ Task 1", "πŸ“ˆ Task 2", "πŸ“š Task 3", "Team"])
261
 
262
  # goal: color the rows based on the rank with styler
263
  def highlight_max(s):
 
284
  "⭐ Task 1",
285
  "πŸ“ˆ Task 2",
286
  "πŸ“š Task 3",
287
+ "Team",
 
288
  ],
289
  datatype=[
290
  "number",
 
293
  "number",
294
  "number",
295
  "str",
 
296
  ],
297
  value=arena_values,
298
  elem_id="arena_leaderboard_dataframe",
299
  height=700,
300
+ column_widths=[70, 190, 110, 110, 110, 150],
301
  wrap=True,
302
  )
303
  leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)