seam-carving / app.py
akshayka's picture
Update app.py
3e3f7d8 verified
raw
history blame
5.13 kB
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "numba==0.60.0",
# "numpy==2.0.2",
# "scikit-image==0.24.0",
# ]
# ///
import marimo
__generated_with = "0.9.6"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
# Seam Carving
_Example adapted from work by [Vincent Warmerdam](https://x.com/fishnets88)_.
## The seam carving algorithm
This marimo demonstration is partially an homage to [a great video by Grant
Sanderson](https://www.youtube.com/watch?v=rpB6zQNsbQU) of 3Blue1Brown, which demonstrates
the seam carving algorithm in [Pluto.jl](https://plutojl.org/):
<iframe width="560" height="315" src="https://www.youtube.com/embed/rpB6zQNsbQU?si=oiZclGIj2atJR47m" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
As Grant explains, the seam carving algorithm preserves the shapes of the main content in the image, while killing the "dead space": the image is resized, but the clocks and other content are not resized or deformed.
This notebook is a Python version of the seam carving algorithm, but it is also a
demonstration of marimo's [caching
feature](https://docs.marimo.io/guides/best_practices/performance.html#cache-computations-with-mo-cache),
which is helpful because the algorithm is compute intensive even when you
use [Numba](https://numba.pydata.org/).
Try it out by playing with the slider!
"""
)
return
@app.cell(hide_code=True)
def __():
input_image = "https://upload.wikimedia.org/wikipedia/en/d/dd/The_Persistence_of_Memory.jpg"
return input_image,
@app.cell(hide_code=True)
def __(mo):
mo.md("""## Try it!""")
return
@app.cell
def __():
import marimo as mo
slider = mo.ui.slider(
0.7,
1.0,
step=0.05,
value=1.0,
label="Amount of resizing to perform:",
show_value=True,
)
slider
return mo, slider
@app.cell
def __(efficient_seam_carve, input_image, mo, slider):
scale_factor = slider.value
result = efficient_seam_carve(input_image, scale_factor)
mo.hstack([mo.image(input_image), mo.image(result)], justify="start")
return result, scale_factor
@app.cell
def __(mo):
import numpy as np
from numba import jit
from skimage import io, filters, transform
import time
def rgb2gray(rgb):
return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
def compute_energy_map(gray):
return np.abs(filters.sobel_h(gray)) + np.abs(filters.sobel_v(gray))
@jit(nopython=True)
def find_seam(energy_map):
height, width = energy_map.shape
dp = energy_map.copy()
backtrack = np.zeros((height, width), dtype=np.int32)
for i in range(1, height):
for j in range(width):
if j == 0:
idx = np.argmin(dp[i - 1, j : j + 2])
backtrack[i, j] = idx + j
min_energy = dp[i - 1, idx + j]
elif j == width - 1:
idx = np.argmin(dp[i - 1, j - 1 : j + 1])
backtrack[i, j] = idx + j - 1
min_energy = dp[i - 1, idx + j - 1]
else:
idx = np.argmin(dp[i - 1, j - 1 : j + 2])
backtrack[i, j] = idx + j - 1
min_energy = dp[i - 1, idx + j - 1]
dp[i, j] += min_energy
return backtrack
@jit(nopython=True)
def remove_seam(image, backtrack):
height, width, _ = image.shape
output = np.zeros((height, width - 1, 3), dtype=np.uint8)
j = np.argmin(backtrack[-1])
for i in range(height - 1, -1, -1):
for k in range(3):
output[i, :, k] = np.delete(image[i, :, k], j)
j = backtrack[i, j]
return output
def seam_carving(image, new_width):
height, width, _ = image.shape
while width > new_width:
gray = rgb2gray(image)
energy_map = compute_energy_map(gray)
backtrack = find_seam(energy_map)
image = remove_seam(image, backtrack)
width -= 1
return image
@mo.cache
def efficient_seam_carve(image_path, scale_factor):
img = io.imread(image_path)
new_width = int(img.shape[1] * scale_factor)
start_time = time.time()
carved_img = seam_carving(img, new_width)
end_time = time.time()
print(f"Seam carving completed in {end_time - start_time:.2f} seconds")
return carved_img
return (
compute_energy_map,
efficient_seam_carve,
filters,
find_seam,
io,
jit,
np,
remove_seam,
rgb2gray,
seam_carving,
time,
transform,
)
if __name__ == "__main__":
app.run()