File size: 20,712 Bytes
9374e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666fad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9374e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
from collections import OrderedDict
import os
import PIL
import numpy as np 

import torch
from torchvision import transforms as T

from safetensors import safe_open
from huggingface_hub.utils import validate_hf_hub_args
from transformers import CLIPImageProcessor, CLIPTokenizer
from diffusers import StableDiffusionXLPipeline
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from diffusers.utils import (
    _get_model_file,
    is_transformers_available,
    logging,
)

from model import PhotoMakerIDEncoder

PipelineImageInput = Union[
    PIL.Image.Image,
    torch.FloatTensor,
    List[PIL.Image.Image],
    List[torch.FloatTensor],
]


class PhotoMakerStableDiffusionXLPipeline(StableDiffusionXLPipeline):
    @validate_hf_hub_args
    def load_photomaker_adapter(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        weight_name: str,
        subfolder: str = '',
        trigger_word: str = 'img',
        **kwargs,
    ):
        """
        #TODO
        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            weight_name (`str`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.

            subfolder (`str`, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.

            trigger_word (`str`, *optional*, defaults to `"img"`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.            
        """

        # Load the main state dict first.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            model_file = _get_model_file(
                pretrained_model_name_or_path_or_dict,
                weights_name=weight_name,
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
            )
            if weight_name.endswith(".safetensors"):
                state_dict = {"id_encoder": {}, "lora_weights": {}}
                with safe_open(model_file, framework="pt", device="cpu") as f:
                    for key in f.keys():
                        if key.startswith("id_encoder."):
                            state_dict["id_encoder"][key.replace("id_encoder.", "")] = f.get_tensor(key)
                        elif key.startswith("lora_weights."):
                            state_dict["lora_weights"][key.replace("lora_weights.", "")] = f.get_tensor(key)
            else:
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        keys = list(state_dict.keys())
        if keys != ["id_encoder", "lora_weights"]:
            raise ValueError("Required keys are (`id_encoder` and `lora_weights`) missing from the state dict.")

        self.trigger_word = trigger_word
        # load finetuned CLIP image encoder and fuse module here if it has not been registered to the pipeline yet
        print(f"Loading PhotoMaker components [1] id_encoder from [{pretrained_model_name_or_path_or_dict}]...")
        id_encoder = PhotoMakerIDEncoder()
        id_encoder.load_state_dict(state_dict["id_encoder"], strict=True)
        id_encoder = id_encoder.to(self.device, dtype=self.unet.dtype)    
        self.id_encoder = id_encoder
        self.id_image_processor = CLIPImageProcessor()

        # load lora into models
        print(f"Loading PhotoMaker components [2] lora_weights from [{pretrained_model_name_or_path_or_dict}]")
        self.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker")

        # Add trigger word token
        if self.tokenizer is not None: 
            self.tokenizer.add_tokens([self.trigger_word], special_tokens=True)
        
        self.tokenizer_2.add_tokens([self.trigger_word], special_tokens=True)
        

    def encode_prompt_with_trigger_word(
        self,
        prompt: str,
        prompt_2: Optional[str] = None,
        num_id_images: int = 1,
        device: Optional[torch.device] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        class_tokens_mask: Optional[torch.LongTensor] = None,
    ):
        device = device or self._execution_device

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Find the token id of the trigger word
        image_token_id = self.tokenizer_2.convert_tokens_to_ids(self.trigger_word)

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_embeds_list = []
            prompts = [prompt, prompt_2]
            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
                input_ids = tokenizer.encode(prompt) # TODO: batch encode
                clean_index = 0
                clean_input_ids = []
                class_token_index = []
                # Find out the corrresponding class word token based on the newly added trigger word token
                for i, token_id in enumerate(input_ids):
                    if token_id == image_token_id:
                        class_token_index.append(clean_index - 1)
                    else:
                        clean_input_ids.append(token_id)
                        clean_index += 1

                if len(class_token_index) != 1:
                    raise ValueError(
                        f"PhotoMaker currently does not support multiple trigger words in a single prompt.\
                            Trigger word: {self.trigger_word}, Prompt: {prompt}."
                    )
                class_token_index = class_token_index[0]

                # Expand the class word token and corresponding mask
                class_token = clean_input_ids[class_token_index]
                clean_input_ids = clean_input_ids[:class_token_index] + [class_token] * num_id_images + \
                    clean_input_ids[class_token_index+1:]                
                    
                # Truncation or padding
                max_len = tokenizer.model_max_length
                if len(clean_input_ids) > max_len:
                    clean_input_ids = clean_input_ids[:max_len]
                else:
                    clean_input_ids = clean_input_ids + [tokenizer.pad_token_id] * (
                        max_len - len(clean_input_ids)
                    )

                class_tokens_mask = [True if class_token_index <= i < class_token_index+num_id_images else False \
                     for i in range(len(clean_input_ids))]
                
                clean_input_ids = torch.tensor(clean_input_ids, dtype=torch.long).unsqueeze(0)
                class_tokens_mask = torch.tensor(class_tokens_mask, dtype=torch.bool).unsqueeze(0)
                
                prompt_embeds = text_encoder(
                    clean_input_ids.to(device),
                    output_hidden_states=True,
                )

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                prompt_embeds = prompt_embeds.hidden_states[-2]
                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        class_tokens_mask = class_tokens_mask.to(device=device) # TODO: ignoring two-prompt case

        return prompt_embeds, pooled_prompt_embeds, class_tokens_mask


    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        # Added parameters (for PhotoMaker)
        input_id_images: PipelineImageInput = None,
        class_tokens_mask: Optional[torch.LongTensor] = None,
        prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
        start_merge_step: int = 0,
    ):
        # TODO: doc
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            callback_steps,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        )
        #        
        if prompt_embeds is not None and class_tokens_mask is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `class_tokens_mask` also have to be passed. Make sure to generate `class_tokens_mask` from the same tokenizer that was used to generate `prompt_embeds`."
            )
        # check the input id images
        if input_id_images is None:
            raise ValueError(
                "Provide `input_id_images`. Cannot leave `input_id_images` undefined for PhotoMaker pipeline."
            )
        if not isinstance(input_id_images, list):
            input_id_images = [input_id_images]

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        assert do_classifier_free_guidance

        # 3. Encode input prompt
        num_id_images = len(input_id_images)
        
        (
            prompt_embeds,
            pooled_prompt_embeds,
            class_tokens_mask,
        ) = self.encode_prompt_with_trigger_word(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_id_images=num_id_images,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            class_tokens_mask=class_tokens_mask,
        )
        
        # 4. Encode input prompt without the trigger word for delayed conditioning
        prompt_text_only = prompt.replace(" "+self.trigger_word, "") # sensitive to white space
        (
            prompt_embeds_text_only,
            negative_prompt_embeds,
            pooled_prompt_embeds_text_only, # TODO: replace the pooled_prompt_embeds with text only prompt
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt_text_only,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds_text_only,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds_text_only,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        )

        # 5. Prepare the input ID images
        dtype = next(self.id_encoder.parameters()).dtype
        if not isinstance(input_id_images[0], torch.Tensor):
            id_pixel_values = self.id_image_processor(input_id_images, return_tensors="pt").pixel_values

        id_pixel_values = id_pixel_values.unsqueeze(0).to(device=device, dtype=dtype) # TODO: multiple prompts

        # 6. Get the update text embedding with the stacked ID embedding
        prompt_embeds = self.id_encoder(id_pixel_values, prompt_embeds, class_tokens_mask)
        
        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        # 7. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 8. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 10. Prepare added time ids & embeddings
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        add_time_ids = self._get_add_time_ids(
            original_size,
            crops_coords_top_left,
            target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )
        add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

        # 11. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

        for i, t in enumerate(timesteps):
            latent_model_input = (
                torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            )
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            if i <= start_merge_step:
                current_prompt_embeds = torch.cat(
                    [negative_prompt_embeds, prompt_embeds_text_only], dim=0
                )
                add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_text_only], dim=0)
            else:
                current_prompt_embeds = torch.cat(
                    [negative_prompt_embeds, prompt_embeds], dim=0
                )
                add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
            # predict the noise residual
            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=current_prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            if do_classifier_free_guidance and guidance_rescale > 0.0:
                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                if callback is not None and i % callback_steps == 0:
                    callback(i, t, latents)

        # make sure the VAE is in float32 mode, as it overflows in float16
        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
            self.upcast_vae()
            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents
            return StableDiffusionXLPipelineOutput(images=image)

        # apply watermark if available
        # if self.watermark is not None:
        #     image = self.watermark.apply_watermark(image)

        image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)