File size: 6,114 Bytes
c83dd81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import cv2
import sys
import numpy as np
import os
from PIL import Image
# from zdete import Predictor as BboxPredictor
from transformers import Wav2Vec2Model, Wav2Vec2Processor

class MyWav2Vec():
    def __init__(self, model_path, device="cuda"):
        super(MyWav2Vec, self).__init__()
        self.processor = Wav2Vec2Processor.from_pretrained(model_path)
        self.wav2Vec = Wav2Vec2Model.from_pretrained(model_path).to(device)
        self.device = device
        print("### Wav2Vec model loaded ###")

    def forward(self, x):
        return self.wav2Vec(x).last_hidden_state

    def process(self, x):
        return self.processor(x, sampling_rate=16000, return_tensors="pt").input_values.to(self.device)

class AutoFlow():
    def __init__(self, auto_flow_dir, imh=512, imw=512):
        super(AutoFlow, self).__init__()
        model_dir = auto_flow_dir+'/third_lib/model_zoo/'
        cfg_file = model_dir + '/zdete_detector/mobilenet_v1_0.25.yaml'
        model_file = model_dir + '/zdete_detector/last_39.pt'
        self.bbox_predictor = BboxPredictor(cfg_file, model_file, imgsz=320, conf_thres=0.6, iou_thres=0.2)
        self.imh = imh
        self.imw = imw
        print("### AutoFlow bbox_predictor loaded ###")

    def frames_to_face_regions(self, frames, toPIL=True):
        # θΎ“ε…₯是bgr numpy格式
        face_region_list = []
        for img in frames:
            # img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
            bbox = self.bbox_predictor.predict(img)[0][0]
            xyxy = bbox[:4]
            score = bbox[4]
            xyxy = np.round(xyxy).astype('int')
            rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
            face_mask = np.zeros((img.shape[0], img.shape[1])).astype('uint8')
            face_mask[rb:re,cb:ce] = 255
            face_mask = cv2.resize(face_mask, ((self.imw, self.imh)))
            if toPIL:
                face_mask = Image.fromarray(face_mask)
            face_region_list.append(face_mask)
        return face_region_list

def xyxy2x0y0wh(bbox):
    x0, y0, x1, y1 = bbox[:4]
    return [x0, y0, x1-x0, y1-y0]

def video_to_frame(video_path: str, interval=1, max_frame=None, imh=None, imw=None, is_return_sum=False, is_rgb=False):
    vidcap = cv2.VideoCapture(video_path) 
    success = True

    key_frames = []
    sum_frames = None
    count = 0
    while success:
        success, image = vidcap.read()
        if image is not None:
            if is_rgb:
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            if imh is not None and imw is not None:
                image = img_resize(image, imh=None, imw=None)

            if count % interval == 0:
                key_frames.append(image)
                if is_return_sum:
                    if sum_frames is None:
                        sum_frames = image.copy().astype('float32')
                    else:
                        sum_frames = sum_frames + image

            count += 1

            if max_frame != None:
                if count >= max_frame:
                    break

    vidcap.release()
    if is_return_sum:
        return key_frames, sum_frames
    else:
        return key_frames

def img_resize(input_img, imh=None, imw=None, max_val=512):
    if imh is not None and imw is not None:
        width, height = imw, imh
    else:
        height, width = input_img.shape[0], input_img.shape[1]
        if height > width:
            ratio = width/height
            height = max_val
            width = ratio * height
        else:
            ratio = height/width
            width = max_val
            height = ratio * width

        height = int(round(height/8)*8)
        width = int(round(width/8)*8)

    input_img = cv2.resize(input_img, (width, height))
    return input_img

def assign_audio_to_frame(audio_input, frame_num):
    audio_len = audio_input.shape[0]
    audio_per_frame = audio_len / frame_num
    audio_to_frame_list = []
    for f_i in range(frame_num):
        start_idx = int(round(f_i * audio_per_frame))
        end_idx = int(round((f_i + 1) * audio_per_frame))
        if start_idx >= audio_len:
            start_idx = int(round(start_idx - audio_per_frame))
        # print(f"frame_i:{f_i}, start_index:{start_idx}, end_index:{end_idx}, audio_length:{audio_input.shape}")
        seg_audio = audio_input[start_idx:end_idx, :]
        if type(seg_audio) == np.ndarray:
            seg_audio = seg_audio.mean(axis=0, keepdims=True) # B * 20 * 768
        elif torch.is_tensor(seg_audio):
            seg_audio = seg_audio.mean(dim=0, keepdim=True)
        audio_to_frame_list.append(seg_audio)

    if type(seg_audio) == np.ndarray:
        audio_to_frames = np.concatenate(audio_to_frame_list, 0)
    else:
        audio_to_frames = torch.cat(audio_to_frame_list, 0)
    return audio_to_frames

def assign_audio_to_frame_new(audio_input, frame_num, pad_frame):
    audio_len = audio_input.shape[0]
    audio_to_frame_list = []
    for f_i in range(frame_num):
        mid_index = int(f_i / frame_num * audio_len)
        start_idx = mid_index - pad_frame
        end_idx = mid_index + pad_frame + 1

        if start_idx < 0:
            start_idx = 0
            end_idx = start_idx + pad_frame * 2 + 1
        if end_idx >= audio_len:
            end_idx = audio_len - 1
            start_idx = end_idx - (pad_frame * 2 + 1)

        seg_audio = audio_input[None, start_idx:end_idx, :]
        audio_to_frame_list.append(seg_audio)

    if type(seg_audio) == np.ndarray:
        audio_to_frames = np.concatenate(audio_to_frame_list, 0)
    else:
        audio_to_frames = torch.cat(audio_to_frame_list, 0)
    return audio_to_frames

class DotDict(dict):
    def __init__(self, *args, **kwargs):
        super(DotDict, self).__init__(*args, **kwargs)

    def __getattr__(self, key):
        value = self[key]
        if isinstance(value, dict):
            value = DotDict(value)
        return value