File size: 8,587 Bytes
c83dd81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import os
import random
from datetime import datetime
from pathlib import Path

import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
import sys

from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2

from decord import VideoReader
from moviepy.editor import VideoFileClip, AudioFileClip

ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
    print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
    print("add ffmpeg to path")
    os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/prompts/infer.yaml")
    parser.add_argument("-W", type=int, default=768)
    parser.add_argument("-H", type=int, default=768)
    parser.add_argument("-L", type=int, default=240)
    parser.add_argument("--seed", type=int, default=3407)

    parser.add_argument("--context_frames", type=int, default=12)
    parser.add_argument("--context_overlap", type=int, default=3)

    parser.add_argument("--cfg", type=float, default=2.5)
    parser.add_argument("--steps", type=int, default=30)
    parser.add_argument("--sample_rate", type=int, default=16000)
    parser.add_argument("--fps", type=int, default=24)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--ref_images_dir", type=str, default=f'./assets/halfbody_demo/refimag')
    parser.add_argument("--audio_dir", type=str, default='./assets/halfbody_demo/audio')
    parser.add_argument("--pose_dir", type=str, default="./assets/halfbody_demo/pose")
    parser.add_argument("--refimg_name", type=str, default='natural_bk_openhand/0035.png')
    parser.add_argument("--audio_name", type=str, default='chinese/echomimicv2_woman.wav')
    parser.add_argument("--pose_name", type=str, default="01")

    args = parser.parse_args()

    return args


def main():
    args = parse_args()

    config = OmegaConf.load(args.config)
    if config.weight_dtype == "fp16":
        weight_dtype = torch.float16
    else:
        weight_dtype = torch.float32

    device = args.device
    if device.__contains__("cuda") and not torch.cuda.is_available():
        device = "cpu"

    inference_config_path = config.inference_config
    infer_config = OmegaConf.load(inference_config_path)

    model_flag = '{}-iter{}'.format(config.motion_module_path.split('/')[-2], config.motion_module_path.split('/')[-1].split('-')[-1][:-4])
    save_dir = Path(f"outputs/{model_flag}-seed{args.seed}/")
    save_dir.mkdir(exist_ok=True, parents=True)
    print(save_dir)

    ############# model_init started #############
    ## vae init
    vae = AutoencoderKL.from_pretrained(
        config.pretrained_vae_path,
    ).to(device, dtype=weight_dtype)

    ## reference net init
    reference_unet = UNet2DConditionModel.from_pretrained(
        config.pretrained_base_model_path,
        subfolder="unet",
    ).to(dtype=weight_dtype, device=device)
    reference_unet.load_state_dict(
        torch.load(config.reference_unet_path, map_location="cpu"),
    )

    ## denoising net init
    if os.path.exists(config.motion_module_path):
        print('using motion module')
    else:
        exit("motion module not found")
        ### stage1 + stage2
    denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        config.motion_module_path,
        subfolder="unet",
        unet_additional_kwargs=infer_config.unet_additional_kwargs,
    ).to(dtype=weight_dtype, device=device)
   
    denoising_unet.load_state_dict(
        torch.load(config.denoising_unet_path, map_location="cpu"),
        strict=False
    )

    # pose net init
    pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
        dtype=weight_dtype, device=device
    )
    pose_net.load_state_dict(torch.load(config.pose_encoder_path))

    ### load audio processor params
    audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
   
    ############# model_init finished #############
    width, height = args.W, args.H
    sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
    scheduler = DDIMScheduler(**sched_kwargs)

    pipe = EchoMimicV2Pipeline(
        vae=vae,
        reference_unet=reference_unet,
        denoising_unet=denoising_unet,
        audio_guider=audio_processor,
        pose_encoder=pose_net,
        scheduler=scheduler,
    )

    pipe = pipe.to(device, dtype=weight_dtype)

    if args.seed is not None and args.seed > -1:
        generator = torch.manual_seed(args.seed)
    else:
        generator = torch.manual_seed(random.randint(100, 1000000))

    final_fps = args.fps
        
    ref_images_dir = args.ref_images_dir
    audio_dir = args.audio_dir
    pose_dir = args.pose_dir

    refimg_name = args.refimg_name
    audio_name = args.audio_name
    pose_name = args.pose_name
    

    inputs_dict = {
        "refimg": f'{ref_images_dir}/{refimg_name}',
        "audio": f'{audio_dir}/{audio_name}',
        "pose": f'{pose_dir}/{pose_name}',
    }

    start_idx = 0

    print('Pose:', inputs_dict['pose'])
    print('Reference:', inputs_dict['refimg'])
    print('Audio:', inputs_dict['audio'])


    ref_flag = '.'.join([refimg_name.split('/')[-2], refimg_name.split('/')[-1]])

    save_path = Path(f"{save_dir}/{ref_flag}/{pose_name}")
    
    save_path.mkdir(exist_ok=True, parents=True)
    ref_s = refimg_name.split('/')[-1].split('.')[0]
    save_name = f"{save_path}/{ref_s}-a-{audio_name}-i{start_idx}"
    
    ref_image_pil = Image.open(inputs_dict['refimg']).resize((args.W, args.H))
    audio_clip = AudioFileClip(inputs_dict['audio'])
    
    args.L = min(args.L, int(audio_clip.duration * final_fps), len(os.listdir(inputs_dict['pose'])))

    pose_list = []
    for index in range(start_idx, start_idx + args.L):
        tgt_musk = np.zeros((args.W, args.H, 3)).astype('uint8')
        tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
        detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
        imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
        im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
        im = np.transpose(np.array(im),(1, 2, 0))
        tgt_musk[rb:re,cb:ce,:] = im

        tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
        pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device=device).permute(2,0,1) / 255.0)
    
    poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
    audio_clip = AudioFileClip(inputs_dict['audio'])
    
    audio_clip = audio_clip.set_duration(args.L / final_fps)
    video = pipe(
        ref_image_pil,
        inputs_dict['audio'],
        poses_tensor[:,:,:args.L,...],
        width,
        height,
        args.L,
        args.steps,
        args.cfg,
        generator=generator,
        audio_sample_rate=args.sample_rate,
        context_frames=args.context_frames,
        fps=final_fps,
        context_overlap=args.context_overlap,
        start_idx=start_idx,
    ).videos 
    
    final_length = min(video.shape[2], poses_tensor.shape[2], args.L)
    video_sig = video[:, :, :final_length, :, :]
    
    save_videos_grid(
        video_sig,
        save_name + "_woa_sig.mp4",
        n_rows=1,
        fps=final_fps,
    )

    video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
    video_clip_sig = video_clip_sig.set_audio(audio_clip)
    video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
    os.system("rm {}".format(save_name + "_woa_sig.mp4"))
    print(save_name)


if __name__ == "__main__":
    main()