root
Reinitialize Git repository with LFS support
c83dd81
raw
history blame
12.1 kB
import os
import random
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from moviepy.editor import VideoFileClip, AudioFileClip
import gradio as gr
from datetime import datetime
from torchao.quantization import quantize_, int8_weight_only
import gc
total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m')
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m')
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m')
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m')
print(f'\033[32m精度:float16\033[0m')
dtype = torch.float16
if torch.cuda.is_available():
device = "cuda"
else:
print("cuda not available, using cpu")
device = "cpu"
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = Path("outputs")
save_dir.mkdir(exist_ok=True, parents=True)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype)
if quantization_input:
quantize_(vae, int8_weight_only())
print("使用int8量化")
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device)
reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True))
if quantization_input:
quantize_(reference_unet, int8_weight_only())
## denoising net init
if os.path.exists("./pretrained_weights/motion_module.pth"):
print('using motion module')
else:
exit("motion module not found")
### stage1 + stage2
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
"./pretrained_weights/sd-image-variations-diffusers",
"./pretrained_weights/motion_module.pth",
subfolder="unet",
unet_additional_kwargs = {
"use_inflated_groupnorm": True,
"unet_use_cross_frame_attention": False,
"unet_use_temporal_attention": False,
"use_motion_module": True,
"cross_attention_dim": 384,
"motion_module_resolutions": [
1,
2,
4,
8
],
"motion_module_mid_block": True ,
"motion_module_decoder_only": False,
"motion_module_type": "Vanilla",
"motion_module_kwargs":{
"num_attention_heads": 8,
"num_transformer_block": 1,
"attention_block_types": [
'Temporal_Self',
'Temporal_Self'
],
"temporal_position_encoding": True,
"temporal_position_encoding_max_len": 32,
"temporal_attention_dim_div": 1,
}
},
).to(dtype=dtype, device=device)
denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False)
# pose net init
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True))
### load audio processor params
audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device)
############# model_init finished #############
sched_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "linear",
"clip_sample": False,
"steps_offset": 1,
"prediction_type": "v_prediction",
"rescale_betas_zero_snr": True,
"timestep_spacing": "trailing"
}
scheduler = DDIMScheduler(**sched_kwargs)
pipe = EchoMimicV2Pipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
pose_encoder=pose_net,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype=dtype)
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
seed = random.randint(100, 1000000)
generator = torch.manual_seed(seed)
inputs_dict = {
"refimg": image_input,
"audio": audio_input,
"pose": pose_input,
}
print('Pose:', inputs_dict['pose'])
print('Reference:', inputs_dict['refimg'])
print('Audio:', inputs_dict['audio'])
save_name = f"{save_dir}/{timestamp}"
ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height))
audio_clip = AudioFileClip(inputs_dict['audio'])
length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose'])))
start_idx = 0
pose_list = []
for index in range(start_idx, start_idx + length):
tgt_musk = np.zeros((width, height, 3)).astype('uint8')
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
im = np.transpose(np.array(im),(1, 2, 0))
tgt_musk[rb:re,cb:ce,:] = im
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
audio_clip = AudioFileClip(inputs_dict['audio'])
audio_clip = audio_clip.set_duration(length / fps)
video = pipe(
ref_image_pil,
inputs_dict['audio'],
poses_tensor[:,:,:length,...],
width,
height,
length,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap,
start_idx=start_idx,
).videos
final_length = min(video.shape[2], poses_tensor.shape[2], length)
video_sig = video[:, :, :final_length, :, :]
save_videos_grid(
video_sig,
save_name + "_woa_sig.mp4",
n_rows=1,
fps=fps,
)
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
video_clip_sig = video_clip_sig.set_audio(audio_clip)
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
video_output = save_name + "_sig.mp4"
seed_text = gr.update(visible=True, value=seed)
return video_output, seed_text
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<div>
<h2 style="font-size: 30px;text-align: center;">EchoMimicV2</h2>
</div>
<div style="text-align: center;">
<a href="https://github.com/antgroup/echomimic_v2">🌐 Github</a> |
<a href="https://arxiv.org/abs/2411.10061">📜 arXiv </a>
</div>
<div style="text-align: center; font-weight: bold; color: red;">
⚠️ 该演示仅供学术研究和体验使用。
</div>
""")
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Group():
image_input = gr.Image(label="图像输入(自动缩放)", type="filepath")
audio_input = gr.Audio(label="音频输入", type="filepath")
pose_input = gr.Textbox(label="姿态输入(目录地址)", placeholder="请输入姿态数据的目录地址", value="assets/halfbody_demo/pose/01")
with gr.Group():
with gr.Row():
width = gr.Number(label="宽度(16的倍数,推荐768)", value=768)
height = gr.Number(label="高度(16的倍数,推荐768)", value=768)
length = gr.Number(label="视频长度,推荐240)", value=240)
with gr.Row():
steps = gr.Number(label="步骤(推荐30)", value=20)
sample_rate = gr.Number(label="采样率(推荐16000)", value=16000)
cfg = gr.Number(label="cfg(推荐2.5)", value=2.5, step=0.1)
with gr.Row():
fps = gr.Number(label="帧率(推荐24)", value=24)
context_frames = gr.Number(label="上下文框架(推荐12)", value=12)
context_overlap = gr.Number(label="上下文重叠(推荐3)", value=3)
with gr.Row():
quantization_input = gr.Checkbox(label="int8量化(推荐显存12G的用户开启,并使用不超过5秒的音频)", value=False)
seed = gr.Number(label="种子(-1为随机)", value=-1)
generate_button = gr.Button("🎬 生成视频")
with gr.Column():
video_output = gr.Video(label="输出视频")
seed_text = gr.Textbox(label="种子", interactive=False, visible=False)
gr.Examples(
examples=[
["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"]
],
inputs=[image_input, audio_input],
label="预设人物及音频",
)
generate_button.click(
generate,
inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed],
outputs=[video_output, seed_text],
)
if __name__ == "__main__":
demo.queue()
demo.launch(inbrowser=True)