Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py | |
from typing import Any, Dict, Optional | |
import torch | |
from einops import rearrange | |
from src.models.attention import TemporalBasicTransformerBlock | |
from .attention import BasicTransformerBlock | |
def torch_dfs(model: torch.nn.Module): | |
result = [model] | |
for child in model.children(): | |
result += torch_dfs(child) | |
return result | |
class ReferenceAttentionControl: | |
def __init__( | |
self, | |
unet, | |
mode="write", | |
do_classifier_free_guidance=False, | |
attention_auto_machine_weight=float("inf"), | |
gn_auto_machine_weight=1.0, | |
style_fidelity=1.0, | |
reference_attn=True, | |
reference_adain=False, | |
fusion_blocks="midup", | |
batch_size=1, | |
) -> None: | |
# 10. Modify self attention and group norm | |
self.unet = unet | |
assert mode in ["read", "write"] | |
assert fusion_blocks in ["midup", "full"] | |
self.reference_attn = reference_attn | |
self.reference_adain = reference_adain | |
self.fusion_blocks = fusion_blocks | |
self.register_reference_hooks( | |
mode, | |
do_classifier_free_guidance, | |
attention_auto_machine_weight, | |
gn_auto_machine_weight, | |
style_fidelity, | |
reference_attn, | |
reference_adain, | |
fusion_blocks, | |
batch_size=batch_size, | |
) | |
def register_reference_hooks( | |
self, | |
mode, | |
do_classifier_free_guidance, | |
attention_auto_machine_weight, | |
gn_auto_machine_weight, | |
style_fidelity, | |
reference_attn, | |
reference_adain, | |
dtype=torch.float16, | |
batch_size=1, | |
num_images_per_prompt=1, | |
device=torch.device("cuda"), | |
fusion_blocks="midup", | |
): | |
MODE = mode | |
do_classifier_free_guidance = do_classifier_free_guidance | |
attention_auto_machine_weight = attention_auto_machine_weight | |
gn_auto_machine_weight = gn_auto_machine_weight | |
style_fidelity = style_fidelity | |
reference_attn = reference_attn | |
reference_adain = reference_adain | |
fusion_blocks = fusion_blocks | |
num_images_per_prompt = num_images_per_prompt | |
dtype = dtype | |
if do_classifier_free_guidance: | |
uc_mask = ( | |
torch.Tensor( | |
[1] * batch_size * num_images_per_prompt * 16 | |
+ [0] * batch_size * num_images_per_prompt * 16 | |
) | |
.to(device) | |
.bool() | |
) | |
else: | |
uc_mask = ( | |
torch.Tensor([0] * batch_size * num_images_per_prompt * 2) | |
.to(device) | |
.bool() | |
) | |
def hacked_basic_transformer_inner_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
audio_cond_fea: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
video_length=None, | |
audio_feature_ratio = 3.0 | |
): | |
if self.use_ada_layer_norm: # False | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
( | |
norm_hidden_states, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
) = self.norm1( | |
hidden_states, | |
timestep, | |
class_labels, | |
hidden_dtype=hidden_states.dtype, | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Self-Attention | |
# self.only_cross_attention = False | |
cross_attention_kwargs = ( | |
cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
) | |
if self.only_cross_attention: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
if MODE == "write": | |
self.bank.append(norm_hidden_states.clone()) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if MODE == "read": | |
bank_feas = [ | |
rearrange( | |
d.unsqueeze(1).repeat(1, video_length, 1, 1), | |
"b t l c -> (b t) l c", | |
) | |
for d in self.bank | |
] | |
modify_norm_hidden_states = torch.cat( | |
[norm_hidden_states] + bank_feas, dim=1 | |
) | |
# print(f"modify_norm_hidden_states:{modify_norm_hidden_states.shape}") | |
hidden_states_uc = ( | |
self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=modify_norm_hidden_states, | |
attention_mask=attention_mask, | |
) | |
+ hidden_states | |
) | |
if do_classifier_free_guidance: | |
hidden_states_c = hidden_states_uc.clone() | |
_uc_mask = uc_mask.clone() | |
# print(hidden_states_c.shape, _uc_mask.shape) | |
if hidden_states.shape[0] != _uc_mask.shape[0]: | |
_uc_mask = ( | |
torch.Tensor( | |
[1] * (hidden_states.shape[0] // 2) | |
+ [0] * (hidden_states.shape[0] // 2) | |
) | |
.to(device) | |
.bool() | |
) | |
# print(hidden_states_c.shape, norm_hidden_states.shape, hidden_states.shape, _uc_mask.shape) | |
hidden_states_c[_uc_mask] = ( | |
self.attn1( | |
norm_hidden_states[_uc_mask], | |
encoder_hidden_states=norm_hidden_states[_uc_mask], # B * 4096 * 768 | |
attention_mask=attention_mask, | |
) | |
+ hidden_states[_uc_mask] | |
) | |
hidden_states = hidden_states_c.clone() | |
else: | |
hidden_states = hidden_states_uc | |
# self.bank.clear() | |
if self.attn2 is not None: | |
# Ref Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm2(hidden_states) | |
) | |
# print("Audio Cross-Attention shapes:", norm_hidden_states.shape, audio_cond_fea.shape) | |
if audio_feature_ratio > 0: | |
# print('#'*5, norm_hidden_states.shape, audio_cond_fea.shape) | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=audio_cond_fea, # B * 50 * 768οΌ | |
attention_mask=attention_mask, | |
) * audio_feature_ratio | |
+ hidden_states | |
) | |
# print("Audio Cross-Attention max after:", hidden_states.max()) | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
# Temporal-Attention | |
return hidden_states | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = ( | |
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
) | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
if self.reference_attn: | |
if self.fusion_blocks == "midup": | |
attn_modules = [ | |
module | |
for module in ( | |
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) | |
) | |
if isinstance(module, BasicTransformerBlock) | |
or isinstance(module, TemporalBasicTransformerBlock) | |
] | |
elif self.fusion_blocks == "full": | |
attn_modules = [ | |
module | |
for module in torch_dfs(self.unet) | |
if isinstance(module, BasicTransformerBlock) | |
or isinstance(module, TemporalBasicTransformerBlock) | |
] | |
attn_modules = sorted( | |
attn_modules, key=lambda x: -x.norm1.normalized_shape[0] | |
) | |
for i, module in enumerate(attn_modules): | |
module._original_inner_forward = module.forward | |
if isinstance(module, BasicTransformerBlock): | |
module.forward = hacked_basic_transformer_inner_forward.__get__( | |
module, BasicTransformerBlock | |
) | |
if isinstance(module, TemporalBasicTransformerBlock): | |
module.forward = hacked_basic_transformer_inner_forward.__get__( | |
module, TemporalBasicTransformerBlock | |
) | |
module.bank = [] | |
module.attn_weight = float(i) / float(len(attn_modules)) | |
def update(self, writer, do_classifier_free_guidance=False, dtype=torch.float16): | |
if self.reference_attn: | |
if self.fusion_blocks == "midup": | |
reader_attn_modules = [ | |
module | |
for module in ( | |
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) | |
) | |
if isinstance(module, TemporalBasicTransformerBlock) | |
] | |
writer_attn_modules = [ | |
module | |
for module in ( | |
torch_dfs(writer.unet.mid_block) | |
+ torch_dfs(writer.unet.up_blocks) | |
) | |
if isinstance(module, BasicTransformerBlock) | |
] | |
elif self.fusion_blocks == "full": | |
reader_attn_modules = [ | |
module | |
for module in torch_dfs(self.unet) | |
if isinstance(module, TemporalBasicTransformerBlock) | |
] | |
writer_attn_modules = [ | |
module | |
for module in torch_dfs(writer.unet) | |
if isinstance(module, BasicTransformerBlock) | |
] | |
reader_attn_modules = sorted( | |
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] | |
) | |
writer_attn_modules = sorted( | |
writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] | |
) | |
for r, w in zip(reader_attn_modules, writer_attn_modules): | |
if do_classifier_free_guidance: | |
r.bank = [torch.cat([v, v]).to(dtype) for v in w.bank] | |
else: | |
r.bank = [v.clone().to(dtype) for v in w.bank] | |
def clear(self): | |
if self.reference_attn: | |
if self.fusion_blocks == "midup": | |
reader_attn_modules = [ | |
module | |
for module in ( | |
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) | |
) | |
if isinstance(module, BasicTransformerBlock) | |
or isinstance(module, TemporalBasicTransformerBlock) | |
] | |
elif self.fusion_blocks == "full": | |
reader_attn_modules = [ | |
module | |
for module in torch_dfs(self.unet) | |
if isinstance(module, BasicTransformerBlock) | |
or isinstance(module, TemporalBasicTransformerBlock) | |
] | |
reader_attn_modules = sorted( | |
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] | |
) | |
for r in reader_attn_modules: | |
r.bank.clear() | |