from dataclasses import dataclass from typing import Optional import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models import ModelMixin from diffusers.utils import BaseOutput from diffusers.utils.import_utils import is_xformers_available from einops import rearrange, repeat from torch import nn from .attention import TemporalBasicTransformerBlock @dataclass class Transformer3DModelOutput(BaseOutput): sample: torch.FloatTensor if is_xformers_available(): import xformers import xformers.ops else: xformers = None class Transformer3DModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm( num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True ) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ TemporalBasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d( inner_dim, in_channels, kernel_size=1, stride=1, padding=0 ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states, encoder_hidden_states=None, audio_cond_fea=None, timestep=None, return_dict: bool = True, ): # Input assert ( hidden_states.dim() == 5 ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") # if encoder_hidden_states.shape[0] != hidden_states.shape[0]: # encoder_hidden_states = repeat( # encoder_hidden_states, "b n c -> (b f) n c", f=video_length # ) if audio_cond_fea.shape[0] != hidden_states.shape[0]: # print(audio_cond_fea.shape, len(audio_cond_fea)) if len(audio_cond_fea.shape) == 3: audio_cond_fea = rearrange( audio_cond_fea, "b f c -> (b f) 1 c" ) elif len(audio_cond_fea.shape) == 4: audio_cond_fea = rearrange( audio_cond_fea, "b f n c -> (b f) n c" ) # print(audio_cond_fea.shape, hidden_states.shape) batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) hidden_states = self.proj_in(hidden_states) # Blocks for i, block in enumerate(self.transformer_blocks): hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, audio_cond_fea=audio_cond_fea, timestep=timestep, video_length=video_length, ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output)