import importlib import os import os.path as osp import shutil import sys from pathlib import Path import av import numpy as np import torch import torchvision from einops import rearrange from PIL import Image def seed_everything(seed): import random import numpy as np torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed % (2**32)) random.seed(seed) def import_filename(filename): spec = importlib.util.spec_from_file_location("mymodule", filename) module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = module spec.loader.exec_module(module) return module def delete_additional_ckpt(base_path, num_keep): dirs = [] for d in os.listdir(base_path): if d.startswith("checkpoint-"): dirs.append(d) num_tot = len(dirs) if num_tot <= num_keep: return # ensure ckpt is sorted and delete the ealier! del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep] for d in del_dirs: path_to_dir = osp.join(base_path, d) if osp.exists(path_to_dir): shutil.rmtree(path_to_dir) def save_videos_from_pil(pil_images, path, fps=8, audio_path=None): import av save_fmt = Path(path).suffix os.makedirs(os.path.dirname(path), exist_ok=True) width, height = pil_images[0].size if save_fmt == ".mp4": codec = "libx264" container = av.open(path, "w") stream = container.add_stream(codec, rate=fps) stream.width = width stream.height = height for pil_image in pil_images: # pil_image = Image.fromarray(image_arr).convert("RGB") av_frame = av.VideoFrame.from_image(pil_image) container.mux(stream.encode(av_frame)) container.mux(stream.encode()) container.close() elif save_fmt == ".gif": pil_images[0].save( fp=path, format="GIF", append_images=pil_images[1:], save_all=True, duration=(1 / fps * 1000), loop=0, ) else: raise ValueError("Unsupported file type. Use .mp4 or .gif.") def save_videos_grid(videos: torch.Tensor, path: str, audio_path=None, rescale=False, n_rows=6, fps=8): videos = rearrange(videos, "b c t h w -> t b c h w") height, width = videos.shape[-2:] outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) x = Image.fromarray(x) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) save_videos_from_pil(outputs, path, fps, audio_path=audio_path) def save_video2imgs(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): videos = rearrange(videos, "b c t h w -> t b c h w") height, width = videos.shape[-2:] os.makedirs(os.path.dirname(path), exist_ok=True) for i, x in enumerate(videos): x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) x = Image.fromarray(x) img_name = osp.join(path, f"{i}.png") x.save(img_name) def read_frames(video_path): container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") frames = [] for packet in container.demux(video_stream): for frame in packet.decode(): image = Image.frombytes( "RGB", (frame.width, frame.height), frame.to_rgb().to_ndarray(), ) frames.append(image) return frames def get_fps(video_path): container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") fps = video_stream.average_rate container.close() return fps