martinakaduc's picture
Upload folder using huggingface_hub
f3305db verified
raw
history blame
10.1 kB
import argparse
import json
import pandas as pd
import os
import time
import concurrent.futures
import tqdm
import yaml
import random
import threading
import orjson
from category import Category
LOCK = threading.RLock()
TASKS = None
CACHE_DICT = None
OUTPUT_DICT = None
# API setting constants
API_MAX_RETRY = None
API_RETRY_SLEEP = None
API_ERROR_OUTPUT = None
# load config args from config yaml files
def make_config(config_file: str) -> dict:
config_kwargs = {}
with open(config_file, "r") as f:
config_kwargs = yaml.load(f, Loader=yaml.SafeLoader)
return config_kwargs
def get_endpoint(endpoint_list):
if endpoint_list is None:
return None
assert endpoint_list is not None
# randomly pick one
api_dict = random.choices(endpoint_list)[0]
return api_dict
def chat_completion_openai(model, messages, temperature, max_tokens, api_dict=None):
import openai
if api_dict:
client = openai.OpenAI(
base_url=api_dict["api_base"],
api_key=api_dict["api_key"],
)
else:
client = openai.OpenAI()
output = API_ERROR_OUTPUT
for _ in range(API_MAX_RETRY):
try:
# print(messages)
completion = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
# extra_body={"guided_choice": GUIDED_CHOICES} if GUIDED_CHOICES else None,
)
output = completion.choices[0].message.content
# print(output)
break
except openai.RateLimitError as e:
print(type(e), e)
time.sleep(API_RETRY_SLEEP)
except openai.BadRequestError as e:
print(messages)
print(type(e), e)
break
except openai.APIConnectionError as e:
print(messages)
print(type(e), e)
time.sleep(API_RETRY_SLEEP)
except openai.InternalServerError as e:
print(messages)
print(type(e), e)
time.sleep(API_RETRY_SLEEP)
except Exception as e:
print(type(e), e)
break
return output
def get_answer(
question: dict,
model_name: str,
max_tokens: int,
temperature: float,
answer_file: str,
api_dict: dict,
categories: list,
testing: bool,
):
if "category_tag" in question:
category_tag = question["category_tag"]
else:
category_tag = {}
output_log = {}
for category in categories:
conv = category.pre_process(question["prompt"])
output = chat_completion_openai(
model=model_name,
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict,
)
# Dump answers
category_tag[category.name_tag] = category.post_process(output)
if testing:
output_log[category.name_tag] = output
question["category_tag"] = category_tag
if testing:
question["output_log"] = output_log
question.drop(["prompt", "uid", "required_tasks"], inplace=True)
with LOCK:
with open(answer_file, "a") as fout:
fout.write(json.dumps(question.to_dict()) + "\n")
def category_merge(row):
id = row["uid"]
input_category = row["category_tag"] if "category_tag" in row else {}
cache_category = CACHE_DICT[id]["category_tag"] if id in CACHE_DICT else {}
output_category = OUTPUT_DICT[id]["category_tag"] if id in OUTPUT_DICT else {}
# tries to fill in missing categories using cache first, then output
for name in TASKS:
if name not in input_category:
if name in cache_category:
input_category[name] = cache_category[name]
continue
if name in output_category:
input_category[name] = output_category[name]
return input_category
def find_required_tasks(row):
id = row["uid"]
input_category = row["category_tag"] if "category_tag" in row else {}
cache_category = CACHE_DICT[id]["category_tag"] if id in CACHE_DICT else {}
output_category = OUTPUT_DICT[id]["category_tag"] if id in OUTPUT_DICT else {}
return [
name
for name in TASKS
if not (
name in input_category or name in cache_category or name in output_category
)
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--testing", action="store_true")
args = parser.parse_args()
enter = input(
"Make sure your config file is properly configured. Press enter to continue."
)
if not enter == "":
exit()
config = make_config(args.config)
API_MAX_RETRY = config["max_retry"]
API_RETRY_SLEEP = config["retry_sleep"]
API_ERROR_OUTPUT = config["error_output"]
categories = [Category.create_category(name) for name in config["task_name"]]
TASKS = config["task_name"]
print(
f"Following categories will be labeled:\n{[category.name_tag for category in categories]}"
)
print("loading input data (might take min)")
with open(config["input_file"], "rb") as f:
data = orjson.loads(f.read())
input_data = pd.DataFrame(data)
# much faster than pd.apply
input_data["uid"] = input_data.question_id.map(str) + input_data.tstamp.map(str)
assert len(input_data) == len(input_data.uid.unique())
print(f"{len(input_data)}# of input data just loaded")
if config["cache_file"]:
print("loading cache data")
with open(config["cache_file"], "rb") as f:
data = orjson.loads(f.read())
cache_data = pd.DataFrame(data)
cache_data["uid"] = cache_data.question_id.map(str) + cache_data.tstamp.map(str)
assert len(cache_data) == len(cache_data.uid.unique())
print(f"{len(cache_data)}# of cache data just loaded")
assert "category_tag" in cache_data.columns
cache_dict = cache_data[["uid", "category_tag"]].set_index("uid")
print("finalizing cache_dict (should take less than 30 sec)")
CACHE_DICT = cache_dict.to_dict("index")
else:
CACHE_DICT = {}
if os.path.isfile(config["output_file"]):
print("loading existing output")
output_data = pd.read_json(config["output_file"], lines=True)
output_data["uid"] = output_data.question_id.map(str) + output_data.tstamp.map(
str
)
assert len(output_data) == len(output_data.uid.unique())
print(f"{len(output_data)}# of existing output just loaded")
assert "category_tag" in output_data.columns
output_dict = output_data[["uid", "category_tag"]].set_index("uid")
print("finalizing output_dict (should take less than 30 sec)")
OUTPUT_DICT = output_dict.to_dict("index")
else:
OUTPUT_DICT = {}
print(
"finding tasks needed to run... (should take around 1 minute or less on large dataset)"
)
input_data["required_tasks"] = input_data.apply(find_required_tasks, axis=1)
not_labeled = input_data[input_data.required_tasks.map(lambda x: len(x) > 0)].copy()
print(f"{len(not_labeled)} # of conversations needs to be labeled")
for name in TASKS:
print(
f"{name}: {len(not_labeled[not_labeled.required_tasks.map(lambda tasks: name in tasks)])}"
)
not_labeled["prompt"] = not_labeled.conversation_a.map(
lambda convo: "\n".join([convo[i]["content"] for i in range(0, len(convo), 2)])
)
not_labeled["prompt"] = not_labeled.prompt.map(lambda x: x[:12500])
with concurrent.futures.ThreadPoolExecutor(
max_workers=config["parallel"]
) as executor:
futures = []
for index, row in tqdm.tqdm(not_labeled.iterrows()):
future = executor.submit(
get_answer,
row,
config["model_name"],
config["max_token"],
config["temperature"],
config["output_file"],
get_endpoint(config["endpoints"]),
[
category
for category in categories
if category.name_tag in row["required_tasks"]
],
args.testing,
)
futures.append(future)
for future in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures)
):
future.result()
if config["convert_to_json"]:
# merge two data frames, but only take the fields from the cache data to overwrite the input data
merge_columns = [category.name_tag for category in categories]
print(f"Columns to be merged:\n{merge_columns}")
input_data["uid"] = input_data.question_id.map(str) + input_data.tstamp.map(str)
assert len(input_data) == len(input_data.uid.unique())
# fastest way to merge
assert os.path.isfile(config["output_file"])
print("reading output file...")
temp = pd.read_json(config["output_file"], lines=True)
temp["uid"] = temp.question_id.map(str) + temp.tstamp.map(str)
assert len(temp) == len(temp.uid.unique())
assert "category_tag" in temp.columns
output_dict = temp[["uid", "category_tag"]].set_index("uid")
print("finalizing output_dict (should take less than 30 sec)")
OUTPUT_DICT = output_dict.to_dict("index")
print("begin merging (should take around 1 minute or less on large dataset)")
input_data["category_tag"] = input_data.apply(category_merge, axis=1)
print("merge completed")
final_data = input_data.drop(
columns=["prompt", "uid", "required_tasks"], errors="ignore"
)
final_data.to_json(
config["output_file"][:-1], orient="records", indent=4, force_ascii=False
)