File size: 6,624 Bytes
c939ae6
 
 
 
 
 
 
 
 
 
0c2c19f
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c19f
c939ae6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
"""
Image augmentation functions
"""

import random

import cv2
import numpy as np

from .metrics import bbox_ioa


def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
    # HSV color-space augmentation
    if hgain or sgain or vgain:
        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
        hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
        dtype = im.dtype  # uint8

        x = np.arange(0, 256, dtype=r.dtype)
        lut_hue = ((x * r[0]) % 180).astype(dtype)
        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im)  # no return needed


def hist_equalize(im, clahe=True, bgr=False):
    # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
    yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
    if clahe:
        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
    else:
        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB


def replicate(im, labels):
    # Replicate labels
    h, w = im.shape[:2]
    boxes = labels[:, 1:].astype(int)
    x1, y1, x2, y2 = boxes.T
    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
        x1b, y1b, x2b, y2b = boxes[i]
        bh, bw = y2b - y1b, x2b - x1b
        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
        im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]  # im4[ymin:ymax, xmin:xmax]
        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)

    return im, labels


def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)


def copy_paste(im, labels, segments, p=0.5):
    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
    n = len(segments)
    if p and n:
        h, w, c = im.shape  # height, width, channels
        im_new = np.zeros(im.shape, np.uint8)
        for j in random.sample(range(n), k=round(p * n)):
            l, s = labels[j], segments[j]
            box = w - l[3], l[2], w - l[1], l[4]
            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
            if (ioa < 0.30).all():  # allow 30% obscuration of existing labels
                labels = np.concatenate((labels, [[l[0], *box]]), 0)
                segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
                cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)

        result = cv2.bitwise_and(src1=im, src2=im_new)
        result = cv2.flip(result, 1)  # augment segments (flip left-right)
        i = result > 0  # pixels to replace
        # i[:, :] = result.max(2).reshape(h, w, 1)  # act over ch
        im[i] = result[i]  # cv2.imwrite('debug.jpg', im)  # debug

    return im, labels, segments


def cutout(im, labels, p=0.5):
    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
    if random.random() < p:
        h, w = im.shape[:2]
        scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
        for s in scales:
            mask_h = random.randint(1, int(h * s))  # create random masks
            mask_w = random.randint(1, int(w * s))

            # box
            xmin = max(0, random.randint(0, w) - mask_w // 2)
            ymin = max(0, random.randint(0, h) - mask_h // 2)
            xmax = min(w, xmin + mask_w)
            ymax = min(h, ymin + mask_h)

            # apply random color mask
            im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]

            # return unobscured labels
            if len(labels) and s > 0.03:
                box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
                ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
                labels = labels[ioa < 0.60]  # remove >60% obscured labels

    return labels


def mixup(im, labels, im2, labels2):
    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
    im = (im * r + im2 * (1 - r)).astype(np.uint8)
    labels = np.concatenate((labels, labels2), 0)
    return im, labels


def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates