Spaces:
Build error
Build error
# YOLOv5 π by Ultralytics, GPL-3.0 license | |
""" | |
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ | |
Usage: | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') | |
""" | |
import torch | |
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
"""Creates a specified YOLOv5 model | |
Arguments: | |
name (str): name of model, i.e. 'yolov5s' | |
pretrained (bool): load pretrained weights into the model | |
channels (int): number of input channels | |
classes (int): number of model classes | |
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model | |
verbose (bool): print all information to screen | |
device (str, torch.device, None): device to use for model parameters | |
Returns: | |
YOLOv5 pytorch model | |
""" | |
from pathlib import Path | |
from models.yolo import Model | |
from models.experimental import attempt_load | |
from utils.general import check_requirements, set_logging | |
from utils.downloads import attempt_download | |
from utils.torch_utils import select_device | |
file = Path(__file__).resolve() | |
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python')) | |
set_logging(verbose=verbose) | |
save_dir = Path('') if str(name).endswith('.pt') else file.parent | |
path = (save_dir / name).with_suffix('.pt') # checkpoint path | |
try: | |
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device) | |
if pretrained and channels == 3 and classes == 80: | |
model = attempt_load(path, map_location=device) # download/load FP32 model | |
else: | |
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path | |
model = Model(cfg, channels, classes) # create model | |
if pretrained: | |
ckpt = torch.load(attempt_download(path), map_location=device) # load | |
msd = model.state_dict() # model state_dict | |
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 | |
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter | |
model.load_state_dict(csd, strict=False) # load | |
if len(ckpt['model'].names) == classes: | |
model.names = ckpt['model'].names # set class names attribute | |
if autoshape: | |
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS | |
return model.to(device) | |
except Exception as e: | |
help_url = 'https://github.com/ultralytics/yolov5/issues/36' | |
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url | |
raise Exception(s) from e | |
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None): | |
# YOLOv5 custom or local model | |
return _create(path, autoshape=autoshape, verbose=verbose, device=device) | |
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-nano model https://github.com/ultralytics/yolov5 | |
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-small model https://github.com/ultralytics/yolov5 | |
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-medium model https://github.com/ultralytics/yolov5 | |
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-large model https://github.com/ultralytics/yolov5 | |
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5 | |
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5 | |
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5 | |
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5 | |
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5 | |
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device) | |
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5 | |
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device) | |
if __name__ == '__main__': | |
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained | |
# model = custom(path='path/to/model.pt') # custom | |
# Verify inference | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from pathlib import Path | |
imgs = ['data/images/zidane.jpg', # filename | |
Path('data/images/zidane.jpg'), # Path | |
'https://ultralytics.com/images/zidane.jpg', # URI | |
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV | |
Image.open('data/images/bus.jpg'), # PIL | |
np.zeros((320, 640, 3))] # numpy | |
results = model(imgs) # batched inference | |
results.print() | |
results.save() | |