Spaces:
Build error
Build error
onipot
commited on
Commit
·
af771af
1
Parent(s):
0c2c19f
app
Browse files- Roboto-Regular.ttf +0 -0
- app.py +85 -0
Roboto-Regular.ttf
ADDED
Binary file (159 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image,ImageDraw, ImageFont
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
from util import Detection
|
7 |
+
|
8 |
+
face_model = os.environ.get('FACE_MODEL')
|
9 |
+
age_model = os.environ.get('AGE_MODEL')
|
10 |
+
|
11 |
+
torch.hub.download_url_to_file(face_model, 'face_model.pt')
|
12 |
+
torch.hub.download_url_to_file(age_model, 'age_model.pt')
|
13 |
+
|
14 |
+
sys.path.append("./")
|
15 |
+
sys.path.append("./yolov5")
|
16 |
+
|
17 |
+
age_model_ts = torch.jit.load("age_model.pt")
|
18 |
+
|
19 |
+
from yolov5.detect import predict, load_yolo_model
|
20 |
+
|
21 |
+
# Model
|
22 |
+
|
23 |
+
model, stride, names, pt, jit, onnx, engine = load_yolo_model("face_model.pt", imgsz=[320,320])
|
24 |
+
|
25 |
+
def run_yolo(img):
|
26 |
+
|
27 |
+
#img0 = Image.open(img.name).convert("RGB")
|
28 |
+
img_path = img.name # ["name"]
|
29 |
+
img0 = Image.open(img_path).convert("RGB")
|
30 |
+
draw = ImageDraw.Draw(img0)
|
31 |
+
|
32 |
+
predictions = predict(age_model_ts, model, stride, names, pt, jit, onnx, engine, imgsz=[320, 320], conf_thres=0.5, iou_thres=0.45, save_conf=True,
|
33 |
+
exist_ok=True, nosave=True, save_txt=False, source=img_path, project=None, name=None)
|
34 |
+
|
35 |
+
detections : list[Detection] = []
|
36 |
+
for k, (bboxes, img) in enumerate(predictions):
|
37 |
+
|
38 |
+
#print(bboxes)
|
39 |
+
# exp.imgs.append(img_info)
|
40 |
+
for i, bbox in enumerate(bboxes):
|
41 |
+
det = Detection(
|
42 |
+
(k+1)*(i+1),
|
43 |
+
bbox["xmin"],
|
44 |
+
bbox["ymin"],
|
45 |
+
bbox["xmax"],
|
46 |
+
bbox["ymax"],
|
47 |
+
bbox["conf"],
|
48 |
+
bbox["class"],
|
49 |
+
bbox["class"],
|
50 |
+
img0.size
|
51 |
+
)
|
52 |
+
same = list(filter(lambda x: x.xmin == det.xmin and x.ymin == det.ymin or ( det.xmin > x.xmin and det.ymin > x.ymin and det.xmax < x.xmax and det.ymax < x.ymax ) or ( det.xmin < x.xmin and det.ymin < x.ymin and det.xmax > x.xmax and det.ymax > x.ymax ) or Detection.get_iou(det, x) > 0.6, detections))
|
53 |
+
|
54 |
+
if len(same) == 0:
|
55 |
+
detections.append(det)
|
56 |
+
draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255))
|
57 |
+
draw.rectangle(((det.xmin, det.ymin - 10), (det.xmax, det.ymin)), fill=(255,255,255))
|
58 |
+
draw.text((det.xmin, det.ymin - 10), det.class_name, fill=(0,0,0), font=ImageFont.truetype("Roboto-Regular.ttf"))
|
59 |
+
|
60 |
+
return img0
|
61 |
+
|
62 |
+
inputs = gr.inputs.Image(type='file', label="Input Image")
|
63 |
+
outputs = gr.outputs.Image(type="pil", label="Output Image")
|
64 |
+
|
65 |
+
title = "AgeGuesser"
|
66 |
+
description = "Guess the age of a person from his/her face!"
|
67 |
+
article = """A fully automated system based on YOLOv5 and EfficientNet to perform face detection and age estimation in real-time.
|
68 |
+
|
69 |
+
Links:
|
70 |
+
<ul>
|
71 |
+
<li>
|
72 |
+
<a href='https://link.springer.com/chapter/10.1007/978-3-030-89131-2_25'>Paper</a>
|
73 |
+
</li>
|
74 |
+
<li>
|
75 |
+
<a href='https://www.researchgate.net/publication/355777953_Real-Time_Age_Estimation_from_Facial_Images_Using_YOLO_and_EfficientNet'>Paper</a>
|
76 |
+
</li>
|
77 |
+
<li>
|
78 |
+
<a href='https://github.com/ai-hazard/AgeGuesser-train'>Github</a>
|
79 |
+
|
80 |
+
</li>
|
81 |
+
"""
|
82 |
+
|
83 |
+
examples = [['images/1.jpg'], ['images/2.jpg'], ['images/3.jpg'], ['images/4.jpg'], ['images/5.jpg'], ]
|
84 |
+
|
85 |
+
gr.Interface(run_yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)
|