onipot commited on
Commit
bd1ea7f
·
1 Parent(s): 0fe9ba3

pil image as input

Browse files
Files changed (3) hide show
  1. app.py +30 -31
  2. yolov5/detect.py +39 -256
  3. yolov5/utils/datasets.py +13 -0
app.py CHANGED
@@ -5,11 +5,12 @@ import torch
5
  from util import Detection
6
  import os
7
 
8
- face_model = os.environ.get('FACE_MODEL')
9
- age_model = os.environ.get('AGE_MODEL')
 
10
 
11
- torch.hub.download_url_to_file(face_model, 'face_model.pt')
12
- torch.hub.download_url_to_file(age_model, 'age_model.pt')
13
 
14
  sys.path.append("./")
15
  sys.path.append("./yolov5")
@@ -29,41 +30,39 @@ def run_yolo(img):
29
 
30
  img0 = ImageOps.contain(img0, (720,720))
31
  img0 = ImageOps.exif_transpose(img0)
32
-
33
- img0.save("img.jpg")
34
 
35
  draw = ImageDraw.Draw(img0)
36
 
37
- predictions = predict(age_model_ts, model, stride, names, pt, jit, onnx, engine, imgsz=[320, 320], conf_thres=0.5, iou_thres=0.45, save_conf=True,
38
- exist_ok=True, nosave=True, save_txt=False, source="img.jpg", project=None, name=None)
 
 
 
39
 
40
  detections : list[Detection] = []
41
- for k, (bboxes, img) in enumerate(predictions):
42
-
43
- for i, bbox in enumerate(bboxes):
44
- det = Detection(
45
- (k+1)*(i+1),
46
- bbox["xmin"],
47
- bbox["ymin"],
48
- bbox["xmax"],
49
- bbox["ymax"],
50
- bbox["conf"],
51
- bbox["class"],
52
- bbox["class"],
53
- img0.size
54
- )
55
- same = list(filter(lambda x: x.xmin == det.xmin and x.ymin == det.ymin or ( det.xmin > x.xmin and det.ymin > x.ymin and det.xmax < x.xmax and det.ymax < x.ymax ) or ( det.xmin < x.xmin and det.ymin < x.ymin and det.xmax > x.xmax and det.ymax > x.ymax ) or Detection.get_iou(det, x) > 0.6, detections))
56
-
57
- if len(same) == 0:
58
- detections.append(det)
59
- draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255))
60
- draw.rectangle(((det.xmin, det.ymin - 10), (det.xmax, det.ymin)), fill=(255,255,255))
61
- draw.text((det.xmin, det.ymin - 10), det.class_name, fill=(0,0,0), font=roboto_font)
62
-
63
- os.remove("img.jpg")
64
  return img0
65
 
66
 
 
 
67
  inputs = gr.inputs.Image(type='filepath', label="Input Image")
68
  outputs = gr.outputs.Image(type="pil", label="Output Image")
69
 
 
5
  from util import Detection
6
  import os
7
 
8
+ if os.environ.get('FACE_MODEL') is not None:
9
+ face_model = os.environ.get('FACE_MODEL')
10
+ age_model = os.environ.get('AGE_MODEL')
11
 
12
+ torch.hub.download_url_to_file(face_model, 'face_model.pt')
13
+ torch.hub.download_url_to_file(age_model, 'age_model.pt')
14
 
15
  sys.path.append("./")
16
  sys.path.append("./yolov5")
 
30
 
31
  img0 = ImageOps.contain(img0, (720,720))
32
  img0 = ImageOps.exif_transpose(img0)
 
 
33
 
34
  draw = ImageDraw.Draw(img0)
35
 
36
+ predictions = predict(age_model_ts, model,
37
+ stride, imgsz=[320, 320],
38
+ conf_thres=0.5, iou_thres=0.45,
39
+ source=img0
40
+ )
41
 
42
  detections : list[Detection] = []
43
+ for k, bbox in enumerate(predictions):
44
+ det = Detection(
45
+ (k+1),
46
+ bbox["xmin"],
47
+ bbox["ymin"],
48
+ bbox["xmax"],
49
+ bbox["ymax"],
50
+ bbox["conf"],
51
+ bbox["class"],
52
+ bbox["class"],
53
+ img0.size
54
+ )
55
+
56
+ detections.append(det)
57
+ draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255))
58
+ draw.rectangle(((det.xmin, det.ymin - 10), (det.xmax, det.ymin)), fill=(255,255,255))
59
+ draw.text((det.xmin, det.ymin - 10), det.class_name, fill=(0,0,0), font=roboto_font)
60
+
 
 
 
 
 
61
  return img0
62
 
63
 
64
+ # run_yolo("D:\\Download\\IMG_20220803_153335.jpg")
65
+
66
  inputs = gr.inputs.Image(type='filepath', label="Input Image")
67
  outputs = gr.outputs.Image(type="pil", label="Output Image")
68
 
yolov5/detect.py CHANGED
@@ -18,7 +18,7 @@ from yolov5.utils.torch_utils import select_device, time_sync
18
  from yolov5.utils.plots import Annotator, colors, save_one_box
19
  from yolov5.utils.general import (check_img_size,
20
  increment_path, non_max_suppression, scale_coords, xyxy2xywh)
21
- from yolov5.utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages
22
  from yolov5.models.common import DetectMultiBackend
23
  import torchvision
24
 
@@ -29,188 +29,6 @@ test_transforms = torchvision.transforms.Compose([
29
  torchvision.transforms.Resize((224, 224)),
30
  ])
31
 
32
- def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
33
- source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
34
- data=ROOT / 'data/coco128.yaml', # dataset.yaml path
35
- imgsz=(640, 640), # inference size (height, width)
36
- conf_thres=0.25, # confidence threshold
37
- iou_thres=0.45, # NMS IOU threshold
38
- max_det=1000, # maximum detections per image
39
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
40
- save_img = False,
41
- view_img=False, # show results
42
- save_txt=False, # save results to *.txt
43
- save_conf=False, # save confidences in --save-txt labels
44
- save_crop=False, # save cropped prediction boxes
45
- nosave=False, # do not save images/videos
46
- classes=None, # filter by class: --class 0, or --class 0 2 3
47
- agnostic_nms=False, # class-agnostic NMS
48
- augment=False, # augmented inference
49
- visualize=False, # visualize features
50
- update=False, # update all models
51
- project=ROOT / 'runs/detect', # save results to project/name
52
- name='exp', # save results to project/name
53
- exist_ok=False, # existing project/name ok, do not increment
54
- line_thickness=3, # bounding box thickness (pixels)
55
- hide_labels=False, # hide labels
56
- hide_conf=False, # hide confidences
57
- half=False, # use FP16 half-precision inference
58
- dnn=False, # use OpenCV DNN for ONNX inference
59
- ):
60
-
61
- import torch
62
- from utils.torch_utils import select_device, time_sync
63
- from utils.plots import Annotator, colors, save_one_box
64
- from utils.general import (check_img_size,
65
- increment_path, non_max_suppression, scale_coords, xyxy2xywh)
66
- from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages
67
- from models.common import DetectMultiBackend
68
- source = str(source)
69
-
70
- save_dir = None
71
- save_path = None
72
- # save_img = not nosave and not source.endswith('.txt') # save inference images
73
- is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
74
- is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
75
- webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
76
-
77
- # Directories
78
- if project is not None:
79
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
80
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
81
-
82
- # Load model
83
- device = select_device(device)
84
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
85
- stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
86
- imgsz = check_img_size(imgsz, s=stride) # check image size
87
-
88
- # Half
89
- half &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16 supported on limited backends with CUDA
90
- if pt or jit:
91
- model.model.half() if half else model.model.float()
92
-
93
- dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
94
- bs = 1 # batch_size
95
- vid_path, vid_writer = [None] * bs, [None] * bs
96
-
97
- # Run inference
98
- model.warmup(imgsz=(1, 3, *imgsz), half=half) # warmup
99
- dt, seen = [0.0, 0.0, 0.0], 0
100
-
101
- #with tqdm(dataset) as pbar:
102
- # pbar.set_description("Document Image Analysis")
103
- for path, im, im0s, vid_cap, s in dataset:
104
- #print(path)
105
- t1 = time_sync()
106
- im = torch.from_numpy(im).to(device)
107
- im = im.half() if half else im.float() # uint8 to fp16/32
108
- im /= 255 # 0 - 255 to 0.0 - 1.0
109
- if len(im.shape) == 3:
110
- im = im[None] # expand for batch dim
111
- t2 = time_sync()
112
- dt[0] += t2 - t1
113
-
114
- # Inference
115
- visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
116
- pred = model(im, augment=augment, visualize=visualize)
117
- t3 = time_sync()
118
- dt[1] += t3 - t2
119
-
120
- # NMS
121
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
122
- dt[2] += time_sync() - t3
123
-
124
- # Second-stage classifier (optional)
125
- # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
126
-
127
- # Process predictions
128
- preds = []
129
- for i, det in enumerate(pred): # per image
130
- seen += 1
131
- if webcam: # batch_size >= 1
132
- p, im0, frame = path[i], im0s[i].copy(), dataset.count
133
- s += f'{i}: '
134
- else:
135
- p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
136
-
137
- p = Path(p) # to Path
138
- if save_dir is not None:
139
- save_path = str(save_dir / p.name) # im.jpg
140
- txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
141
- s += '%gx%g ' % im.shape[2:] # print string
142
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
143
- imc = im0.copy() if save_crop else im0 # for save_crop
144
- annotator = Annotator(im0, line_width=line_thickness, example=str(names))
145
- if len(det):
146
- # Rescale boxes from img_size to im0 size
147
- det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
148
-
149
- # Print results
150
- for c in det[:, -1].unique():
151
- n = (det[:, -1] == c).sum() # detections per class
152
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
153
-
154
- # Write results
155
- if save_txt:
156
- with open(txt_path + '.txt', 'w') as f:
157
- for *xyxy, conf, cls in reversed(det):
158
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
159
- preds.append({"class": str(int(cls)), "xmin": int(xyxy[0]), "ymin": int(xyxy[1]), "xmax": int(xyxy[2]),"ymax": int(xyxy[3]), "conf": float(conf)})
160
- if save_txt: # Write to file
161
- line = (int(cls), *xywh, conf) if save_conf else (cls, *xywh) # label format
162
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
163
-
164
- if save_img or save_crop or view_img: # Add bbox to image
165
- c = int(cls) # integer class
166
- label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
167
- annotator.box_label(xyxy, label, color=colors(c, True))
168
- if save_crop:
169
- save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
170
- else:
171
- for *xyxy, conf, cls in reversed(det):
172
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
173
- preds.append({"class": str(int(cls)), "xmin": int(xyxy[0]), "ymin": int(xyxy[1]), "xmax": int(xyxy[2]),"ymax": int(xyxy[3]), "conf": float(conf)})
174
-
175
- # Print time (inference-only)
176
- # LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
177
-
178
- # Stream results
179
- if save_img:
180
- im0 = annotator.result()
181
- if view_img:
182
- cv2.imshow(str(p), im0)
183
- cv2.waitKey(1) # 1 millisecond
184
-
185
- # Save results (image with detections)
186
- if save_img:
187
- if dataset.mode == 'image':
188
- cv2.imwrite(save_path, im0)
189
- else: # 'video' or 'stream'
190
- if vid_path[i] != save_path: # new video
191
- vid_path[i] = save_path
192
- if isinstance(vid_writer[i], cv2.VideoWriter):
193
- vid_writer[i].release() # release previous video writer
194
- if vid_cap: # video
195
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
196
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
197
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
198
- else: # stream
199
- fps, w, h = 30, im0.shape[1], im0.shape[0]
200
- save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
201
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
202
- vid_writer[i].write(im0)
203
- yield preds, save_path
204
- # Print results
205
- #t = tuple(x / seen * 1E3 for x in dt) # speeds per image
206
- #LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
207
- """ if save_txt or save_img:
208
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
209
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
210
- if update:
211
- strip_optimizer(weights) # update model (to fix SourceChangeWarning) """
212
-
213
-
214
  def load_yolo_model(weights, device="cpu", imgsz=[1280, 1280]):
215
  # Load model
216
  device = select_device(device)
@@ -232,90 +50,55 @@ def predict(
232
 
233
  age_model,
234
  model, # model.pt path(s)
235
- stride, names, pt, jit, onnx, engine,
236
- source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
237
- data=ROOT / 'data/coco128.yaml', # dataset.yaml path
238
  imgsz=(640, 640), # inference size (height, width)
239
  conf_thres=0.5, # confidence threshold
240
  iou_thres=0.45, # NMS IOU threshold
241
  max_det=1000, # maximum detections per image
242
  device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
243
- save_img = False,
244
- view_img=False, # show results
245
- save_txt=False, # save results to *.txt
246
- save_conf=False, # save confidences in --save-txt labels
247
- save_crop=False, # save cropped prediction boxes
248
- nosave=False, # do not save images/videos
249
  classes=None, # filter by class: --class 0, or --class 0 2 3
250
  agnostic_nms=False, # class-agnostic NMS
251
  augment=False, # augmented inference
252
  visualize=False, # visualize features
253
- update=False, # update all models
254
- project=None, # save results to project/name
255
- name='exp', # save results to project/name
256
- exist_ok=False, # existing project/name ok, do not increment
257
- line_thickness=3, # bounding box thickness (pixels)
258
- hide_labels=False, # hide labels
259
- hide_conf=False, # hide confidences
260
  half=False, # use FP16 half-precision inference
261
- dnn=False, # use OpenCV DNN for ONNX inference
262
 
263
  ):
264
-
265
-
266
- source = str(source)
267
-
268
- save_dir = None
269
- save_path = None
270
 
271
- dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
272
 
273
- # Run inference
274
-
275
- dt, seen = [0.0, 0.0, 0.0], 0
276
-
277
- #with tqdm(dataset) as pbar:
278
- # pbar.set_description("Document Image Analysis")
279
- for path, im, im0s, vid_cap, s in dataset:
280
- #print(path)
281
- t1 = time_sync()
282
- im = torch.from_numpy(im).to(device)
283
- im = im.half() if half else im.float() # uint8 to fp16/32
284
- im /= 255 # 0 - 255 to 0.0 - 1.0
285
- if len(im.shape) == 3:
286
- im = im[None] # expand for batch dim
287
- t2 = time_sync()
288
- dt[0] += t2 - t1
289
-
290
- # Inference
291
- visualize = False
292
- pred = model(im, augment=augment, visualize=visualize)
293
- t3 = time_sync()
294
- dt[1] += t3 - t2
295
-
296
- # NMS
297
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
298
- dt[2] += time_sync() - t3
299
-
300
- # Process predictions
301
- preds = []
302
- for i, det in enumerate(pred): # per image
303
-
304
- p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
305
-
306
- if len(det):
307
- # Rescale boxes from img_size to im0 size
308
- det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
309
-
310
- for *xyxy, conf, cls in reversed(det):
311
- face = im0[int(xyxy[1]):int(xyxy[3]),int(xyxy[0]):int(xyxy[2])]
312
- face_img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
313
- im = test_transforms(face_img).unsqueeze_(0)
314
- with torch.no_grad():
315
- y = age_model(im)
316
-
317
- age = y[0]
318
-
319
- preds.append({"class": str(int(age)), "xmin": int(xyxy[0]), "ymin": int(xyxy[1]), "xmax": int(xyxy[2]),"ymax": int(xyxy[3]), "conf": float(conf)})
320
-
321
- yield preds, save_path
 
18
  from yolov5.utils.plots import Annotator, colors, save_one_box
19
  from yolov5.utils.general import (check_img_size,
20
  increment_path, non_max_suppression, scale_coords, xyxy2xywh)
21
+ from yolov5.utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, pil_to_cv
22
  from yolov5.models.common import DetectMultiBackend
23
  import torchvision
24
 
 
29
  torchvision.transforms.Resize((224, 224)),
30
  ])
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  def load_yolo_model(weights, device="cpu", imgsz=[1280, 1280]):
33
  # Load model
34
  device = select_device(device)
 
50
 
51
  age_model,
52
  model, # model.pt path(s)
53
+ stride,
54
+ source=None, # PIL Image
 
55
  imgsz=(640, 640), # inference size (height, width)
56
  conf_thres=0.5, # confidence threshold
57
  iou_thres=0.45, # NMS IOU threshold
58
  max_det=1000, # maximum detections per image
59
  device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
 
 
 
 
 
 
60
  classes=None, # filter by class: --class 0, or --class 0 2 3
61
  agnostic_nms=False, # class-agnostic NMS
62
  augment=False, # augmented inference
63
  visualize=False, # visualize features
 
 
 
 
 
 
 
64
  half=False, # use FP16 half-precision inference
 
65
 
66
  ):
 
 
 
 
 
 
67
 
68
+ im, im0 = pil_to_cv(source, img_size=imgsz[0], stride=stride)
69
 
70
+ im = torch.from_numpy(im).to(device)
71
+ im = im.half() if half else im.float() # uint8 to fp16/32
72
+ im /= 255 # 0 - 255 to 0.0 - 1.0
73
+ if len(im.shape) == 3:
74
+ im = im[None] # expand for batch dim
75
+
76
+ # Inference
77
+ visualize = False
78
+ pred = model(im, augment=augment, visualize=visualize)
79
+
80
+ # NMS
81
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
82
+
83
+ # Process predictions
84
+ preds = []
85
+ for i, det in enumerate(pred): # per image
86
+
87
+ # im0 = im0.copy()
88
+
89
+ if len(det):
90
+ # Rescale boxes from img_size to im0 size
91
+ det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
92
+
93
+ for *xyxy, conf, cls in reversed(det):
94
+ face = im0[int(xyxy[1]):int(xyxy[3]),int(xyxy[0]):int(xyxy[2])]
95
+ face_img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
96
+ im = test_transforms(face_img).unsqueeze_(0)
97
+ with torch.no_grad():
98
+ y = age_model(im)
99
+
100
+ age = y[0]
101
+
102
+ preds.append({"class": str(int(age)), "xmin": int(xyxy[0]), "ymin": int(xyxy[1]), "xmax": int(xyxy[2]),"ymax": int(xyxy[3]), "conf": float(conf)})
103
+
104
+ return preds
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolov5/utils/datasets.py CHANGED
@@ -87,6 +87,19 @@ def exif_transpose(image):
87
  image.info["exif"] = exif.tobytes()
88
  return image
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  class LoadImages:
91
  # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
92
  def __init__(self, path, img_size=640, stride=32, auto=True):
 
87
  image.info["exif"] = exif.tobytes()
88
  return image
89
 
90
+
91
+ def pil_to_cv(pil_img, img_size=320, stride=32, auto=True):
92
+ np_img = np.array(pil_img)
93
+
94
+ img0 = cv2.cvtColor(np_img, cv2.COLOR_RGB2BGR)
95
+
96
+ img = letterbox(img0, img_size, stride=stride, auto=auto)[0]
97
+ img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
98
+ img = np.ascontiguousarray(img)
99
+
100
+ return img, img0
101
+
102
+
103
  class LoadImages:
104
  # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
105
  def __init__(self, path, img_size=640, stride=32, auto=True):