File size: 20,071 Bytes
bfcf71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44b21e0
bfcf71e
 
 
44b21e0
 
bfcf71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Device-independent algorithms for LLM.

import logging
import time
import torch
import torch.nn.functional as F
import transformers
logger = logging.getLogger(__name__)

# Helper to pull out the response tokens.
def isolate_responses_BL(output_BL, prompt_len, eos_token_id):
    responses_BL = []
    resp_BL = output_BL[:, prompt_len:]
    for i in range(resp_BL.shape[0]):
        resp_L = resp_BL[i]
        resplen = resp_L.shape[0]
        for j in range(resplen):
            if resp_L[j] == eos_token_id:
                resplen = j+1
                break
        response_L = resp_L[:resplen].cpu().detach().numpy()
        responses_BL.append(response_L)
    return responses_BL

def tokenize_prompt(device, tokenizer, chat, quiet=False):
    # Tokenize the prompt.
    prompt_BL = tokenizer.apply_chat_template(
        [chat],
        tokenizer=True, add_generation_prompt=True, return_tensors='pt'
    ).to(device)
    if not quiet:
        print('PROMPT:')
        print(tokenizer.decode(prompt_BL[0]))
    return prompt_BL    

def generate(device, model, tokenizer, chat):
    """Generate a response using huggingface's generation."""

    prompt_BL = tokenize_prompt(device, tokenizer, chat)
    prompt_len = prompt_BL.shape[1]

    # Generate response.

    # Unfortunately, huggingface's generation code uses 'cumsum',
    # which doesn't have a deterministic implementation.
    torch.use_deterministic_algorithms(False)
    generation_output = model.generate(
        inputs=prompt_BL, max_new_tokens=512, do_sample=True,
        return_dict_in_generate=True,
    )
    torch.use_deterministic_algorithms(True)

    output_BL = generation_output.sequences

    for response_L in isolate_responses_BL(output_BL, prompt_len, tokenizer.eos_token_id):
        print(f'RESPONSE:')
        print(tokenizer.decode(response_L))

    return tokenizer.decode(response_L)

def generate_with_logits(device, model, tokenizer, chat, seed=None):
    # Huggingface generation that returns logits too.

    if seed is not None:
        transformers.set_seed(seed)

    prompt_BL = tokenize_prompt(device, tokenizer, chat)
    prompt_len = prompt_BL.shape[1]

    # Unfortunately, huggingface's generation code uses 'cumsum',
    # which doesn't have a deterministic implementation.
    torch.use_deterministic_algorithms(False)
    generation_output = model.generate(
        inputs=prompt_BL, max_new_tokens=16, do_sample=True,
        return_dict_in_generate=True, output_logits=True,
    )
    torch.use_deterministic_algorithms(True)

    output_BL = generation_output.sequences
    logits_BLV = torch.stack(generation_output.logits, axis=1)

    for response_L in isolate_responses_BL(output_BL, prompt_len, tokenizer.eos_token_id):
        print(f'RESPONSE:')
        print(tokenizer.decode(response_L))

    return response_L, logits_BLV[0]

def response_logits(device, model, tokenizer, chat, response_L):
    # Calculate logits using a single pass.

    prompt_BL = tokenize_prompt(device, tokenizer, chat)
    response_pt_L = torch.from_numpy(response_L[:-1])

    # Concatenate along axis 1.
    input_ids = torch.cat((prompt_BL, response_pt_L[None]), dim=1)

    outputs = model(input_ids)
    logits_BLV = outputs.logits

    return logits_BLV[0][-len(response_L):]

def generate_custom(device, model, tokenizer, chat, max_tokens=512, seed=None, return_tokens=False, quiet=False, return_lnprobs=False):
    """Generate a response using custom generation."""

    if seed is not None:
        torch.manual_seed(seed)

    prompt_BL = tokenize_prompt(device, tokenizer, chat, quiet=quiet)

    # Generate response.

    input_ids = prompt_BL
    past_key_values = None

    response_L = []
    lnprobs_L = []
    while 1:
        outputs = model(input_ids, past_key_values=past_key_values, use_cache=True)
        past_key_values = outputs.past_key_values

        logits = outputs.logits[0, -1, :]
        p_V = F.softmax(logits, dim=-1)
        token = torch.multinomial(p_V, num_samples=1).item()
        response_L.append(token)
        lnprobs_L.append(F.log_softmax(logits, dim=-1)[token].item())

        p_token = p_V[token].item()
        if not quiet:
            print(f'  Sampled token {format_token(tokenizer, token)}   ({p_token*100.0:.3f}%)')

        if token == tokenizer.eos_token_id or len(response_L) >= max_tokens:
            break
        
        input_ids = torch.tensor([[token]], device=device)
    
    if not quiet:
        print(f'RESPONSE:')
        print(tokenizer.decode(response_L))

    if return_tokens:
        if return_lnprobs:
            return response_L, lnprobs_L
        else:
            return response_L
    else:
        assert not return_lnprobs
        return tokenizer.decode(response_L)

def format_token(tokenizer, token_id):
    return repr(tokenizer.decode(token_id))

def apoc(device, model_x, model_y, tokenizer, chat_x, chat_y, max_tokens=512, seed=None, return_tokens=False, quiet=False):
    """Generate a response using APOC unconditional sampling."""

    if seed is not None:
        torch.manual_seed(seed)

    # This early implementation of the algorithm is numerically non-robust,
    # so reduce problems by using high-precision floating-point.
    logit_dtype = torch.float64

    prompt_x_BL = tokenize_prompt(device, tokenizer, chat_x, quiet=quiet)
    prompt_y_BL = tokenize_prompt(device, tokenizer, chat_y, quiet=quiet)

    # Four variables are needed, since in the first iteration it depends on prompt (X vs Y),
    # whereas in later iterations it depends on response (a vs b).
    input_ids_xa = prompt_x_BL
    input_ids_ya = prompt_y_BL
    input_ids_xb = prompt_x_BL
    input_ids_yb = prompt_y_BL

    past_key_values_xa = None
    past_key_values_ya = None
    past_key_values_xb = None
    past_key_values_yb = None

    equal = True
    a_eos = False
    b_eos = False
    def zero():
        return torch.zeros(1, dtype=logit_dtype, device=device)
    ln_pya_m_ln_pxa = zero()
    ln_pxb_m_ln_pyb = zero()

    response_a_L = []
    response_b_L = []
    i = 0
    while 1:
        if i >= max_tokens or (a_eos and b_eos): break
        if not quiet:
            print(f'Generating response token {i}')
        i += 1

        forward_passes_start = time.perf_counter()

        if not a_eos:
            outputs = model_x(input_ids_xa, past_key_values=past_key_values_xa, use_cache=True)
            past_key_values_xa = outputs.past_key_values
            logits = outputs.logits[0, -1, :].to(logit_dtype)
            ln_pxa_V = F.log_softmax(logits, dim=-1)

            outputs = model_y(input_ids_ya, past_key_values=past_key_values_ya, use_cache=True)
            past_key_values_ya = outputs.past_key_values
            logits = outputs.logits[0, -1, :].to(logit_dtype)
            ln_pya_V = F.log_softmax(logits, dim=-1)
        
        if not b_eos:
            if equal:
                # In equal mode, neither input_ids nor past_key_values depends on a vs b,
                # so we can reuse the forward pass results for a 50% time savings.
                assert not a_eos
                past_key_values_xb = past_key_values_xa
                ln_pxb_V = ln_pxa_V
                past_key_values_yb = past_key_values_ya
                ln_pyb_V = ln_pya_V
            else:
                outputs = model_x(input_ids_xb, past_key_values=past_key_values_xb, use_cache=True)
                past_key_values_xb = outputs.past_key_values
                logits = outputs.logits[0, -1, :].to(logit_dtype)
                ln_pxb_V = F.log_softmax(logits, dim=-1)

                outputs = model_y(input_ids_yb, past_key_values=past_key_values_yb, use_cache=True)
                past_key_values_yb = outputs.past_key_values
                logits = outputs.logits[0, -1, :].to(logit_dtype)
                ln_pyb_V = F.log_softmax(logits, dim=-1)
        
        forward_passes_end = time.perf_counter()
        if not quiet:
            print(f'  Forward passes took {(forward_passes_end - forward_passes_start)*1000:.0f} ms')
        
        if equal:
            ln_pmeet_V = torch.minimum(
                ln_pxa_V + torch.maximum(zero(), -ln_pya_m_ln_pxa),
                ln_pya_V + torch.maximum(zero(), ln_pya_m_ln_pxa),
            )
            pmeet_V = torch.exp(ln_pmeet_V)
            pmeet = torch.sum(pmeet_V)

            if not quiet:
                print(f'  Equal mode (pmeet={pmeet*100.0:.3f}%)')

            if torch.rand_like(pmeet) < pmeet:
                token_a = token_b = torch.multinomial(pmeet_V, num_samples=1).item()

                p_token_a = (pmeet_V[token_a] / pmeet).item()
                if not quiet:
                    print(f'  Sampled {format_token(tokenizer, token_a)}   ({p_token_a*100.0:.1f}%)')
            else:
                if not quiet:
                    print('  Exited equal mode')
                equal = False

        if not equal:
            if not a_eos:
                wxt_V = torch.maximum(zero(), torch.exp(ln_pxa_V) - torch.exp(ln_pya_V + ln_pya_m_ln_pxa))
                token_a = torch.multinomial(wxt_V, num_samples=1).item()

                p_token_a = (wxt_V[token_a] / torch.sum(wxt_V)).item()
                if not quiet:
                    print(f'  Sampled token_a {format_token(tokenizer, token_a)}   ({p_token_a*100.0:.3f}%)')
            if not b_eos:
                wyt_V = torch.maximum(zero(), torch.exp(ln_pyb_V) - torch.exp(ln_pxb_V + ln_pxb_m_ln_pyb))
                token_b = torch.multinomial(wyt_V, num_samples=1).item()

                p_token_b = (wyt_V[token_b] / torch.sum(wyt_V)).item()
                if not quiet:
                    print(f'  Sampled token_b {format_token(tokenizer, token_b)}   ({p_token_b*100.0:.3f}%)')
        
        if not a_eos:
            response_a_L.append(token_a)
            input_ids_xa = input_ids_ya = torch.tensor([[token_a]], device=device)
            ln_pya_m_ln_pxa += ln_pya_V[token_a] - ln_pxa_V[token_a]
            if token_a == tokenizer.eos_token_id:
                a_eos = True
        if not b_eos:
            response_b_L.append(token_b)
            input_ids_xb = input_ids_yb = torch.tensor([[token_b]], device=device)
            ln_pxb_m_ln_pyb += ln_pxb_V[token_b] - ln_pyb_V[token_b]
            if token_b == tokenizer.eos_token_id:
                b_eos = True

    if not quiet:
        print(f'RESPONSE X:')
        print(tokenizer.decode(response_a_L))
        print(f'RESPONSE Y:')
        print(tokenizer.decode(response_b_L))

    if return_tokens:
        return response_a_L, response_b_L
    else:
        return tokenizer.decode(response_a_L), tokenizer.decode(response_b_L)

# Alternative implementation.
@torch.no_grad()
def apoc_alt(device, model_x, model_y, tokenizer, chat_x, chat_y, max_tokens=512, seed=None):
    if seed is not None:
        torch.manual_seed(seed)

    prompt_x_BL = tokenize_prompt(device, tokenizer, chat_x, quiet=True)
    prompt_y_BL = tokenize_prompt(device, tokenizer, chat_y, quiet=True)
    model_pair = ModelPair(model_x, model_y, prompt_x_BL, prompt_y_BL)

    logger.debug('PROMPT X:')
    logger.debug(tokenizer.decode(prompt_x_BL[0]))
    logger.debug('PROMPT Y:')
    logger.debug(tokenizer.decode(prompt_y_BL[0]))

    return _apoc_impl(model_pair, tokenizer, max_tokens)

LOGIT_DTYPE = torch.float64

class ModelPair:
    def __init__(self, model_x, model_y, prompt_x_BL, prompt_y_BL):
        self._model_x = model_x
        self._model_y = model_y
        self._prompt_x_BL = prompt_x_BL
        self._prompt_y_BL = prompt_y_BL
        self._is_swapped = False

    def start(self):
        # Return logprobs for the initial token.

        outputs = self._model_x(self._prompt_x_BL, use_cache=True)
        self._past_key_values_x = outputs.past_key_values
        logits = outputs.logits[0, -1, :].to(LOGIT_DTYPE)
        lnpx_V = F.log_softmax(logits, dim=-1)

        outputs = self._model_y(self._prompt_y_BL, use_cache=True)
        self._past_key_values_y = outputs.past_key_values
        logits = outputs.logits[0, -1, :].to(LOGIT_DTYPE)
        lnpy_V = F.log_softmax(logits, dim=-1)

        return self._maybe_swap(lnpx_V, lnpy_V)

    def step(self, token):
        # Append the given token, then return logprobs for the next token.

        forward_passes_start = time.perf_counter()

        input_ids = torch.tensor([[token]], device=self._prompt_x_BL.device)

        outputs = self._model_x(input_ids, past_key_values=self._past_key_values_x, use_cache=True)
        self._past_key_values_x = outputs.past_key_values
        logits = outputs.logits[0, -1, :].to(LOGIT_DTYPE)
        lnpx_V = F.log_softmax(logits, dim=-1)

        outputs = self._model_y(input_ids, past_key_values=self._past_key_values_y, use_cache=True)
        self._past_key_values_y = outputs.past_key_values
        logits = outputs.logits[0, -1, :].to(LOGIT_DTYPE)
        lnpy_V = F.log_softmax(logits, dim=-1)

        forward_passes_end = time.perf_counter()
        logger.debug(f'Incremental forward passes took {(forward_passes_end - forward_passes_start)*1000:.0f} ms')

        return self._maybe_swap(lnpx_V, lnpy_V)
    
    def get_position(self):
        # Return a position that can be rewound to.
        return self._past_key_values_x, self._past_key_values_y
    
    def rewind_to(self, position):
        # Rewind the KV cache.
        self._past_key_values_x, self._past_key_values_y = position
    
    def swap_models(self):
        # Exchange the order of the models.
        self._is_swapped = not self._is_swapped
    
    def _maybe_swap(self, a, b):
        if self._is_swapped:
            return b, a
        else:
            return a, b

def _apoc_impl(model_pair, tokenizer, max_tokens):
    prefix = []
    lnpx_V, lnpy_V = model_pair.start()
    lnpy_m_lnpx = torch.zeros(1, dtype=lnpx_V.dtype, device=lnpx_V.device)

    while 1:
        ln_peq_V = torch.minimum(
            lnpx_V + F.relu(-lnpy_m_lnpx),
            lnpy_V + F.relu(lnpy_m_lnpx),
        )
        peq_V = torch.exp(ln_peq_V)
        peq = torch.sum(peq_V)

        if torch.rand_like(peq) > peq:
            logger.debug(f'Completed common prefix ({(1-peq)*100.:.3f}%)')
            break
        logger.debug(f'Extending common prefix ({peq*100.:.3f}%)')
        
        token = torch.multinomial(peq_V, 1).item()
        prefix.append(token)
        lnpy_m_lnpx += lnpy_V[token] - lnpx_V[token]

        p_token = (peq_V[token] / peq).item()
        logger.debug(f'Sampled prefix token {format_token(tokenizer, token)}   ({p_token*100.0:.3f}%)')

        if token == tokenizer.eos_token_id or len(prefix) >= max_tokens:
            return prefix, prefix
        
        lnpx_V, lnpy_V = model_pair.step(token)
    
    remaining_tokens = max_tokens - len(prefix)
    split_pos = model_pair.get_position()
    response_a = prefix + _apoc_gen_suffix(model_pair, tokenizer, remaining_tokens, lnpx_V, lnpy_V, lnpy_m_lnpx)
    logger.debug('First suffix complete; rewinding')
    model_pair.rewind_to(split_pos)
    model_pair.swap_models()
    response_b = prefix + _apoc_gen_suffix(model_pair, tokenizer, remaining_tokens, lnpy_V, lnpx_V, -lnpy_m_lnpx)

    return response_a, response_b

def _apoc_gen_suffix(model_pair, tokenizer, max_tokens, lnpx_V, lnpy_V, lnpy_m_lnpx):
    lnpy_m_lnpx = lnpy_m_lnpx.clone()
    suffix = []
    while 1:
        wx_V = F.relu(torch.exp(lnpx_V) - torch.exp(lnpy_V + lnpy_m_lnpx))
        token = torch.multinomial(wx_V, 1).item()
        suffix.append(token)
        lnpy_m_lnpx += lnpy_V[token] - lnpx_V[token]

        p_token = (wx_V[token] / torch.sum(wx_V)).item()
        logger.debug(f'Sampled suffix token {format_token(tokenizer, token)}   ({p_token*100.0:.3f}%)')

        if token == tokenizer.eos_token_id or len(suffix) >= max_tokens:
            return suffix
        
        lnpx_V, lnpy_V = model_pair.step(token)

def generate_streaming(device, model, tokenizer, chat, max_tokens=512, seed=None):
    """Stream a response using custom generation."""

    prompt_BL = tokenize_prompt(device, tokenizer, chat, quiet=True)
    logger.debug('PROMPT:')
    logger.debug(tokenizer.decode(prompt_BL[0]))

    if seed is not None:
        torch.manual_seed(seed)

    return _generate_streaming_impl(device, model, tokenizer, prompt_BL, max_tokens)

def _generate_streaming_impl(device, model, tokenizer, prompt_BL, max_tokens):
    input_ids = prompt_BL
    past_key_values = None

    n_tokens = 0
    while 1:
        outputs = model(input_ids, past_key_values=past_key_values, use_cache=True)
        past_key_values = outputs.past_key_values

        logits = outputs.logits[0, -1, :]
        p_V = F.softmax(logits, dim=-1)
        token = torch.multinomial(p_V, num_samples=1).item()

        p_token = p_V[token].item()
        logger.debug(f'  Sampled token {format_token(tokenizer, token)}   ({p_token*100.0:.3f}%)')

        yield token
        n_tokens += 1

        if token == tokenizer.eos_token_id or n_tokens >= max_tokens:
            break
        
        input_ids = torch.tensor([[token]], device=device)

# APOC unconditional streaming
@torch.no_grad()
def apoc_streaming(model_x, model_y, tokenizer, chat_x, chat_y, max_tokens=512, seed=None):
    if seed is not None:
        torch.manual_seed(seed)

    prompt_x_BL = tokenize_prompt(model_x.device, tokenizer, chat_x, quiet=True)
    prompt_y_BL = tokenize_prompt(model_y.device, tokenizer, chat_y, quiet=True)
    model_pair = ModelPair(model_x, model_y, prompt_x_BL, prompt_y_BL)

    logger.debug('PROMPT X:')
    logger.debug(tokenizer.decode(prompt_x_BL[0]))
    logger.debug('PROMPT Y:')
    logger.debug(tokenizer.decode(prompt_y_BL[0]))

    return _apoc_streaming_impl(model_pair, tokenizer, max_tokens)

def _apoc_streaming_impl(model_pair, tokenizer, max_tokens):
    remaining_tokens = max_tokens
    lnpx_V, lnpy_V = model_pair.start()
    lnpy_m_lnpx = torch.zeros(1, dtype=lnpx_V.dtype, device=lnpx_V.device)

    while 1:
        ln_peq_V = torch.minimum(
            lnpx_V + F.relu(-lnpy_m_lnpx),
            lnpy_V + F.relu(lnpy_m_lnpx),
        )
        peq_V = torch.exp(ln_peq_V)
        peq = torch.sum(peq_V)

        if torch.rand_like(peq) > peq:
            logger.debug(f'Completed common prefix ({(1-peq)*100.:.3f}%)')
            break
        logger.debug(f'Extending common prefix ({peq*100.:.3f}%)')
        
        token = torch.multinomial(peq_V, 1).item()
        remaining_tokens -= 1
        yield token, token
        lnpy_m_lnpx += lnpy_V[token] - lnpx_V[token]

        p_token = (peq_V[token] / peq).item()
        logger.debug(f'Sampled prefix token {format_token(tokenizer, token)}   ({p_token*100.0:.3f}%)')

        if token == tokenizer.eos_token_id or remaining_tokens == 0:
            return
        
        lnpx_V, lnpy_V = model_pair.step(token)
    
    split_pos = model_pair.get_position()
    for token_a in _apoc_streaming_gen_suffix(model_pair, tokenizer, remaining_tokens, lnpx_V, lnpy_V, lnpy_m_lnpx):
        yield token_a, None
    logger.debug('Suffix a complete; rewinding')
    model_pair.rewind_to(split_pos)
    model_pair.swap_models()
    for token_b in _apoc_streaming_gen_suffix(model_pair, tokenizer, remaining_tokens, lnpy_V, lnpx_V, -lnpy_m_lnpx):
        yield None, token_b
    logger.debug('Suffix b complete')

def _apoc_streaming_gen_suffix(model_pair, tokenizer, max_tokens, lnpx_V, lnpy_V, lnpy_m_lnpx):
    remaining_tokens = max_tokens
    lnpy_m_lnpx = lnpy_m_lnpx.clone()
    while 1:
        wx_V = F.relu(torch.exp(lnpx_V) - torch.exp(lnpy_V + lnpy_m_lnpx))
        token = torch.multinomial(wx_V, 1).item()
        remaining_tokens -= 1
        yield token
        lnpy_m_lnpx += lnpy_V[token] - lnpx_V[token]

        p_token = (wx_V[token] / torch.sum(wx_V)).item()
        logger.debug(f'Sampled suffix token {format_token(tokenizer, token)}   ({p_token*100.0:.3f}%)')

        if token == tokenizer.eos_token_id or remaining_tokens == 0:
            return
        
        lnpx_V, lnpy_V = model_pair.step(token)