masharpe's picture
Reduce logging spam
4f16778
raw
history blame
6.87 kB
# Gradio demo of streaming generation of multiple LLM response pairs.
import spaces
import logging
import time
import html
import os
import numpy as np
import gradio as gr
import util
import huggingface_hub
import torch
import transformers
import accelerate
# For setting `requirements.txt`.
print('Dependency versions:')
print(f'huggingface_hub=={huggingface_hub.__version__}')
print(f'numpy=={np.__version__}')
print(f'torch=={torch.__version__}')
print(f'transformers=={transformers.__version__}')
print(f'accelerate=={accelerate.__version__}')
print()
# Initialize logging.
logging.basicConfig(format='%(levelname)s:%(name)s: %(message)s', level=logging.WARNING)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# gr.DataFrame is currently bugged for updating values,
# so we must use raw HTML.
# https://github.com/gradio-app/gradio/issues/8160
css = '''
.response-table {
width: 100%;
table-layout: fixed;
}
.response-table th, .response-table td {
width: 50%;
}
.response-table td {
font-family: monospace;
white-space: pre-wrap;
text-align: left;
vertical-align: top;
}
.highlight {
background-color: #90FF90;
}
'''
def make_html_table(headers, data):
rows = ['<tr>' + ''.join(f'<th>{h}</th>' for h in headers) + '</tr>\n']
for row in data:
rows.append('<tr>' + ''.join(f'<td>{v}</td>' for v in row) + '</tr>\n')
return '<table class="response-table">\n' + ''.join(rows) + '</table>\n'
def highlight_prefix(tokens, prefix_len):
prefix_tokens = tokens[:prefix_len]
s = tokenizer.decode(tokens, skip_special_tokens=True)
prefix_s = tokenizer.decode(prefix_tokens, skip_special_tokens=True)
s_lcp_len = util.longest_common_prefix(np.array(list(s)), np.array(list(prefix_s)))
prefix_html = html.escape(s[:s_lcp_len])
suffix_html = html.escape(s[s_lcp_len:])
return f'<span class="highlight">{prefix_html}</span>{suffix_html}'
def format_response_pair(tokens_a, tokens_b):
# This is slightly convoluted, so as to properly handle grapheme clusters that span token boundaries.
token_lcp_len = util.longest_common_prefix(tokens_a, tokens_b)
return highlight_prefix(tokens_a, token_lcp_len), highlight_prefix(tokens_b, token_lcp_len)
HEADERS = ['Response (Left)', 'Response (Right)']
repo_id = "Qwen/Qwen2-0.5B-Instruct"
DRY_RUN = os.environ.get('DRY_RUN') == '1'
if DRY_RUN:
from load import load_tokenizer
tokenizer = load_tokenizer(repo_id)
def fn(max_tokens, num_responses, prompt_x, prompt_y):
logger.info('Starting generation...')
generation_start = time.perf_counter()
rows = [['']*2 for i in range(num_responses)]
yield make_html_table(HEADERS, rows)
for j in range(num_responses):
response_raw_a = f'Sure!\n\n1 2 3 4 & 5.'
response_raw_b = f'Sure!\n\n1 2 3 4 5 &\n\n\n\n6.'
response_tok_a = tokenizer.encode(response_raw_a, add_special_tokens=False, return_tensors='np')[0]
response_tok_b = tokenizer.encode(response_raw_b, add_special_tokens=False, return_tensors='np')[0]
steps = 1 + max(len(response_tok_a), len(response_tok_b))
for i in range(steps):
time.sleep(0.01)
prefix_tok_a = response_tok_a[:i]
prefix_tok_b = response_tok_b[:i]
content_a, content_b = format_response_pair(prefix_tok_a, prefix_tok_b)
rows[j][0] = content_a
rows[j][1] = content_b
yield make_html_table(HEADERS, rows)
generation_end = time.perf_counter()
logger.info(f'Generation took {(generation_end - generation_start):.3f} s')
else:
from load import load_model
import algorithms
#algorithms.logger.setLevel(logging.DEBUG)
model, tokenizer = load_model(repo_id)
def make_chat(system_msg, prompt):
chat = [
{
'role': 'system',
'content': system_msg,
},
{
'role': 'user',
'content': prompt,
},
]
return chat
@spaces.GPU
def fn(max_tokens, num_responses, prompt_x, prompt_y):
logger.info('Starting generation...')
generation_start = time.perf_counter()
# Is this necessary with ZeroGPU?
torch.use_deterministic_algorithms(True)
rows = [['']*2 for i in range(num_responses)]
yield make_html_table(HEADERS, rows)
for j in range(num_responses):
system_msg = "You are a helpful assistant."
chat_x = make_chat(system_msg, prompt_x)
chat_y = make_chat(system_msg, prompt_y)
gen = algorithms.apoc_streaming(
model,
model,
tokenizer,
chat_x,
chat_y,
max_tokens=max_tokens,
)
response_a_L = []
response_b_L = []
for token_a, token_b in gen:
dirty = False
if token_a is not None:
response_a_L.append(token_a)
dirty = True
if token_b is not None:
response_b_L.append(token_b)
dirty = True
if dirty:
content_a, content_b = format_response_pair(np.array(response_a_L), np.array(response_b_L))
rows[j][0] = content_a
rows[j][1] = content_b
yield make_html_table(HEADERS, rows)
generation_end = time.perf_counter()
logger.info(f'Generation took {(generation_end - generation_start):.3f} s')
demo = gr.Interface(
fn=fn,
inputs=[
gr.Slider(1, 512, label='Max Tokens', value=48),
gr.Slider(1, 16, step=1, label='Num Responses', value=8),
gr.Textbox(label='Prompt (Left)'),
gr.Textbox(label='Prompt (Right)'),
],
outputs=[
gr.HTML(),
],
css=css,
title='All-Prefix-Optimal Coupling',
description='Try similar prompts to see the effect of the difference between them. '
f'Model: `{repo_id}`.'
,
examples=[
[48, 8, 'Count from 1 to 5.', 'Count from 1 to 6.'],
# This would be a good example, but Qwen2-0.5B occasionally goes off-color.
#[48, 8, 'Tell me a joke.', 'Tell me a funny joke.'],
[48, 8, 'Calculate 3 + 4', 'Calculate 3 + 5'],
[48, 8, "What's the capital of Canada?", "What's the capital of France?"],
[48, 8, "1 3 5. What number is next?", "4 5 6. What number is next?"],
],
# In HuggingFace Spaces, this defaults to true, which makes startup
# take a very long time.
cache_examples=False,
)
demo.launch()