matanmichaely
commited on
Commit
•
3c37a29
1
Parent(s):
d7ef93f
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
from dotenv import find_dotenv, load_dotenv
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
3 |
import streamlit as st
|
4 |
-
import os
|
5 |
|
6 |
-
|
7 |
-
# load env variables from .env file
|
8 |
load_dotenv(find_dotenv())
|
9 |
|
10 |
-
#
|
11 |
-
def
|
12 |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
13 |
|
14 |
text = image_to_text(url)[0]["generated_text"]
|
@@ -16,33 +17,44 @@ def img_to_text(url):
|
|
16 |
|
17 |
|
18 |
# llm
|
19 |
-
def generate_story(
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
|
26 |
#
|
27 |
# text-to-speech
|
28 |
def text_to_speech(text):
|
29 |
-
|
30 |
-
|
31 |
-
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
32 |
-
headers = {"Authorization": f"Bearer {os.environ.get('HUGGINGFACE_API_TOKEN')}"}
|
33 |
-
payload = {
|
34 |
-
"inputs": text
|
35 |
-
}
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
def main():
|
45 |
-
st.set_page_config(page_title="img
|
46 |
st.header("turn image to audio story")
|
47 |
uploaded_file = st.file_uploader("Choose an image ... ", type="jpg")
|
48 |
|
@@ -52,7 +64,7 @@ def main():
|
|
52 |
with open(uploaded_file.name, "wb") as file:
|
53 |
file.write(bytes_data)
|
54 |
st.image(uploaded_file, caption="Uploaded image", use_column_width=True)
|
55 |
-
text =
|
56 |
story = generate_story(text)
|
57 |
text_to_speech(story)
|
58 |
|
@@ -60,6 +72,7 @@ def main():
|
|
60 |
st.write(text)
|
61 |
with st.expander("story"):
|
62 |
st.write(story)
|
63 |
-
st.audio("audio.
|
|
|
64 |
|
65 |
main()
|
|
|
1 |
from dotenv import find_dotenv, load_dotenv
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoProcessor, AutoModel
|
4 |
+
from langchain import PromptTemplate, LLMChain
|
5 |
+
from langchain.llms import GooglePalm
|
6 |
+
import scipy
|
7 |
import streamlit as st
|
|
|
8 |
|
|
|
|
|
9 |
load_dotenv(find_dotenv())
|
10 |
|
11 |
+
# img2text
|
12 |
+
def img_2_text(url):
|
13 |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
14 |
|
15 |
text = image_to_text(url)[0]["generated_text"]
|
|
|
17 |
|
18 |
|
19 |
# llm
|
20 |
+
def generate_story(scenario):
|
21 |
+
template = """"
|
22 |
+
You are a story teller;
|
23 |
+
you can generate a creative fun story based on a sample narrative, the story should not be more than 100 words;
|
24 |
+
CONTEXT: {scenario}
|
25 |
+
STORY:
|
26 |
+
"""
|
27 |
+
|
28 |
+
prompt = PromptTemplate(template=template,
|
29 |
+
input_variables=['scenario']
|
30 |
+
)
|
31 |
+
llm = GooglePalm(temperature=0.7)
|
32 |
+
|
33 |
+
story_llm = LLMChain(llm=llm, prompt=prompt, verbose=True)
|
34 |
|
35 |
+
story = story_llm.predict(scenario=scenario)
|
36 |
+
|
37 |
+
return story
|
38 |
|
39 |
|
40 |
#
|
41 |
# text-to-speech
|
42 |
def text_to_speech(text):
|
43 |
+
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
44 |
+
model = AutoModel.from_pretrained("suno/bark-small")
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
inputs = processor(
|
47 |
+
text=[text],
|
48 |
+
return_tensors="pt",
|
49 |
+
)
|
50 |
|
51 |
+
speech_values = model.generate(**inputs, do_sample=True)
|
52 |
+
sampling_rate = model.generation_config.sample_rate
|
53 |
+
scipy.io.wavfile.write("audio.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
|
54 |
|
55 |
|
56 |
def main():
|
57 |
+
st.set_page_config(page_title="img 2 audio story")
|
58 |
st.header("turn image to audio story")
|
59 |
uploaded_file = st.file_uploader("Choose an image ... ", type="jpg")
|
60 |
|
|
|
64 |
with open(uploaded_file.name, "wb") as file:
|
65 |
file.write(bytes_data)
|
66 |
st.image(uploaded_file, caption="Uploaded image", use_column_width=True)
|
67 |
+
text = img_2_text(uploaded_file.name)
|
68 |
story = generate_story(text)
|
69 |
text_to_speech(story)
|
70 |
|
|
|
72 |
st.write(text)
|
73 |
with st.expander("story"):
|
74 |
st.write(story)
|
75 |
+
st.audio("audio.wav")
|
76 |
+
|
77 |
|
78 |
main()
|