import os import random import cv2 import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import uuid plt.rc('font', size=20) colors = [ [255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]] def plot_results(support_img, query_img, support_kp, support_w, query_kp, query_w, skeleton, initial_proposals, prediction, radius=6, out_dir='./heatmaps'): img_names = [img.split("_")[0] for img in os.listdir(out_dir) if str_is_int(img.split("_")[0])] if len(img_names) > 0: name_idx = max([int(img_name) for img_name in img_names]) + 1 else: name_idx = 0 h, w, c = support_img.shape prediction = prediction[-1].cpu().numpy() * h support_img = (support_img - np.min(support_img)) / (np.max(support_img) - np.min(support_img)) query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img)) for id, (img, w, keypoint) in enumerate(zip([support_img, query_img], [support_w, query_w], [support_kp, prediction])): f, axes = plt.subplots() plt.imshow(img) for k in range(keypoint.shape[0]): if w[k] > 0: kp = keypoint[k, :2] c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6) patch = plt.Circle(kp, radius, color=c) axes.add_patch(patch) axes.text(kp[0], kp[1], k) plt.draw() for l, limb in enumerate(skeleton): kp = keypoint[:, :2] if l > len(colors) - 1: c = [x / 255 for x in random.sample(range(0, 255), 3)] else: c = [x / 255 for x in colors[l]] if w[limb[0]] > 0 and w[limb[1]] > 0: patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]], [kp[limb[0], 1], kp[limb[1], 1]], linewidth=6, color=c, alpha=0.6) axes.add_artist(patch) plt.axis('off') # command for hiding the axis. name = 'support' if id == 0 else 'query' plt.savefig(f'./{out_dir}/{str(name_idx)}_{str(name)}.png', bbox_inches='tight', pad_inches=0) if id == 1: plt.show() plt.clf() plt.close('all') def plot_query_results(query_img, query_w, skeleton, prediction, radius=6, out_dir='./heatmaps'): img_names = [img.split("_")[0] for img in os.listdir(out_dir) if str_is_int(img.split("_")[0])] if len(img_names) > 0: name_idx = max([int(img_name) for img_name in img_names]) + 1 else: name_idx = 0 h, w, c = query_img.shape prediction = prediction[-1].cpu().numpy() * h query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img)) for id, (img, w, keypoint) in enumerate(zip([query_img], [query_w], [prediction])): f, axes = plt.subplots() plt.imshow(img) for k in range(keypoint.shape[0]): if w[k] > 0: kp = keypoint[k, :2] c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6) patch = plt.Circle(kp, radius, color=c) axes.add_patch(patch) axes.text(kp[0], kp[1], k) plt.draw() for l, limb in enumerate(skeleton): kp = keypoint[:, :2] if l > len(colors) - 1: c = [x / 255 for x in random.sample(range(0, 255), 3)] else: c = [x / 255 for x in colors[l]] if w[limb[0]] > 0 and w[limb[1]] > 0: patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]], [kp[limb[0], 1], kp[limb[1], 1]], linewidth=6, color=c, alpha=0.6) axes.add_artist(patch) plt.axis('off') # command for hiding the axis. plt.savefig(f'./{out_dir}/{str(name_idx)}_query_out.png', bbox_inches='tight', pad_inches=0) plt.show() plt.clf() plt.close('all') return name_idx def plot_modified_query(query_img, query_w, skeleton, prediction, modified_prediction, radius=6, out_dir='./heatmaps'): import math img_names = [img.split("_")[0] for img in os.listdir(out_dir) if str_is_int(img.split("_")[0])] if len(img_names) > 0: name_idx = max([int(img_name) for img_name in img_names]) + 1 else: name_idx = 0 h, w, c = query_img.shape prediction = prediction * h modified_prediction = modified_prediction * h # support_img = (support_img - np.min(support_img)) / (np.max(support_img) - np.min(support_img)) query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img)) # for id, (img, w, keypoint) in enumerate(zip([support_img, query_img], # [support_w, query_w], # [support_kp, prediction])): for id, (img, w, keypoint, modified_keypoint) in enumerate(zip([query_img], [query_w], [prediction], [modified_prediction])): f, axes = plt.subplots() plt.imshow(img) for k in range(keypoint.shape[0]): if w[k] > 0: kp1 = keypoint[k, :2] kp2 = modified_keypoint[k, :2] dist = 20*math.dist(keypoint[k, :2], modified_keypoint[k, :2])/h kp = (kp1+kp2)/2 # kp = keypoint[k, :2] c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6) patch = plt.Circle(kp, radius*dist, color=c) axes.add_patch(patch) axes.text(kp[0], kp[1], k) plt.draw() for l, limb in enumerate(skeleton): kp1 = keypoint[:, :2] kp2 = modified_keypoint[:, :2] kp = (kp1 + kp2) / 2 if l > len(colors) - 1: c = [x / 255 for x in random.sample(range(0, 255), 3)] else: c = [x / 255 for x in colors[l]] if w[limb[0]] > 0 and w[limb[1]] > 0: patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]], [kp[limb[0], 1], kp[limb[1], 1]], linewidth=6, color=c, alpha=0.6) axes.add_artist(patch) plt.axis('off') # command for hiding the axis. # name = 'support' if id == 0 else 'query' name = 'query' plt.savefig(f'./{out_dir}/{str(name_idx)}_query_out.png', bbox_inches='tight', pad_inches=0) plt.show() plt.clf() plt.close('all') return name_idx def str_is_int(s): try: int(s) return True except ValueError: return False