{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d2c2b738", "metadata": {}, "outputs": [], "source": [ "from fastai.vision.all import *\n", "import gradio as gr" ] }, { "cell_type": "code", "execution_count": 2, "id": "b92d24f3", "metadata": {}, "outputs": [], "source": [ "# search_terms = ('hard hat','construction gloves','safety glasses','construction boots', 'screw driver','hammer','f150')\n" ] }, { "cell_type": "code", "execution_count": 3, "id": "34ebdca4", "metadata": {}, "outputs": [], "source": [ "# path = Path('construction_photos')" ] }, { "cell_type": "code", "execution_count": 4, "id": "04347f65", "metadata": {}, "outputs": [], "source": [ "# dls = DataBlock(\n", "# blocks=(ImageBlock,CategoryBlock),\n", "# getters=None,\n", "# n_inp=None,\n", "# item_tfms=[Resize(224,method='squish')],\n", "# get_items=get_image_files,\n", "# splitter=RandomSplitter(seed=42),\n", "# get_y=parent_label,\n", "# ).dataloaders(path,bs=128)" ] }, { "cell_type": "code", "execution_count": 5, "id": "85098e65", "metadata": {}, "outputs": [], "source": [ "learn = load_learner('construction_things.pkl')" ] }, { "cell_type": "code", "execution_count": 6, "id": "a6ed198b", "metadata": {}, "outputs": [], "source": [ "def classify_image(img):\n", " pred,idx,probs = learn.predict(img)\n", " return dict(zip(dls.vocab,map(float,probs)))\n", "# classify_image(get_image_files(path)[100])" ] }, { "cell_type": "code", "execution_count": 7, "id": "b2f582a8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860/\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/plain": [ "(,\n", " 'http://127.0.0.1:7860/',\n", " None)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "image = gr.inputs.Image(shape=(192,192))\n", "label = gr.outputs.Label()\n", "interface = gr.Interface(fn=classify_image,inputs=image,outputs=label)\n", "# interface.launch(inline=True)\n", "interface.launch(inline=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }