Spaces:
Runtime error
Runtime error
Commit
·
d9a62b3
1
Parent(s):
990159e
added text chunking for text over 4,000 chars
Browse files- app.ipynb +125 -99
- app.py +110 -13
- packages.txt +1 -0
- requirements.txt +3 -2
app.ipynb
CHANGED
@@ -15,16 +15,7 @@
|
|
15 |
"execution_count": null,
|
16 |
"id": "667802a7-0f36-4136-a381-e66210b20462",
|
17 |
"metadata": {},
|
18 |
-
"outputs": [
|
19 |
-
{
|
20 |
-
"name": "stdout",
|
21 |
-
"output_type": "stream",
|
22 |
-
"text": [
|
23 |
-
"OPENAI_API_KEY var not found. Trying import tts_openai_secrets\n",
|
24 |
-
"import tts_openai_secrets succeeded\n"
|
25 |
-
]
|
26 |
-
}
|
27 |
-
],
|
28 |
"source": [
|
29 |
"#| export\n",
|
30 |
"#tts_openai_secrets.py content:\n",
|
@@ -74,7 +65,9 @@
|
|
74 |
"source": [
|
75 |
"#| export\n",
|
76 |
"import gradio as gr\n",
|
77 |
-
"import openai"
|
|
|
|
|
78 |
]
|
79 |
},
|
80 |
{
|
@@ -82,15 +75,7 @@
|
|
82 |
"execution_count": null,
|
83 |
"id": "0ffd33b4-cb9b-4c01-bff6-4c3102854ab6",
|
84 |
"metadata": {},
|
85 |
-
"outputs": [
|
86 |
-
{
|
87 |
-
"name": "stdout",
|
88 |
-
"output_type": "stream",
|
89 |
-
"text": [
|
90 |
-
"successfully got tts model list: ['tts-1-hd', 'tts-1-hd-1106', 'canary-tts', 'tts-1', 'tts-1-1106']\n"
|
91 |
-
]
|
92 |
-
}
|
93 |
-
],
|
94 |
"source": [
|
95 |
"#| export\n",
|
96 |
"try:\n",
|
@@ -111,6 +96,85 @@
|
|
111 |
"tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']"
|
112 |
]
|
113 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
{
|
115 |
"cell_type": "code",
|
116 |
"execution_count": null,
|
@@ -119,16 +183,46 @@
|
|
119 |
"outputs": [],
|
120 |
"source": [
|
121 |
"#| export\n",
|
122 |
-
"def create_speech(input_text, model='tts-1', voice='alloy'):\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
" client = openai.OpenAI()\n",
|
124 |
-
"
|
125 |
-
"
|
126 |
-
"
|
127 |
-
"
|
128 |
-
"
|
129 |
-
" )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
" client.close()\n",
|
131 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
]
|
133 |
},
|
134 |
{
|
@@ -186,37 +280,7 @@
|
|
186 |
"execution_count": null,
|
187 |
"id": "4b534fe7-4337-423e-846a-1bdb7cccc4ea",
|
188 |
"metadata": {},
|
189 |
-
"outputs": [
|
190 |
-
{
|
191 |
-
"name": "stdout",
|
192 |
-
"output_type": "stream",
|
193 |
-
"text": [
|
194 |
-
"Running on local URL: http://0.0.0.0:7860\n",
|
195 |
-
"\n",
|
196 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
197 |
-
]
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"data": {
|
201 |
-
"text/html": [
|
202 |
-
"<div><iframe src=\"http://localhost:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
203 |
-
],
|
204 |
-
"text/plain": [
|
205 |
-
"<IPython.core.display.HTML object>"
|
206 |
-
]
|
207 |
-
},
|
208 |
-
"metadata": {},
|
209 |
-
"output_type": "display_data"
|
210 |
-
},
|
211 |
-
{
|
212 |
-
"data": {
|
213 |
-
"text/plain": []
|
214 |
-
},
|
215 |
-
"execution_count": null,
|
216 |
-
"metadata": {},
|
217 |
-
"output_type": "execute_result"
|
218 |
-
}
|
219 |
-
],
|
220 |
"source": [
|
221 |
"#| hide\n",
|
222 |
"#Notebook launch\n",
|
@@ -228,37 +292,7 @@
|
|
228 |
"execution_count": null,
|
229 |
"id": "cb886d45",
|
230 |
"metadata": {},
|
231 |
-
"outputs": [
|
232 |
-
{
|
233 |
-
"name": "stdout",
|
234 |
-
"output_type": "stream",
|
235 |
-
"text": [
|
236 |
-
"Running on local URL: http://0.0.0.0:7861\n",
|
237 |
-
"\n",
|
238 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
239 |
-
]
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"data": {
|
243 |
-
"text/html": [
|
244 |
-
"<div><iframe src=\"http://localhost:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
245 |
-
],
|
246 |
-
"text/plain": [
|
247 |
-
"<IPython.core.display.HTML object>"
|
248 |
-
]
|
249 |
-
},
|
250 |
-
"metadata": {},
|
251 |
-
"output_type": "display_data"
|
252 |
-
},
|
253 |
-
{
|
254 |
-
"data": {
|
255 |
-
"text/plain": []
|
256 |
-
},
|
257 |
-
"execution_count": null,
|
258 |
-
"metadata": {},
|
259 |
-
"output_type": "execute_result"
|
260 |
-
}
|
261 |
-
],
|
262 |
"source": [
|
263 |
"#| export\n",
|
264 |
"#.py launch\n",
|
@@ -271,15 +305,7 @@
|
|
271 |
"execution_count": null,
|
272 |
"id": "28e8d888-e790-46fa-bbac-4511b9ab796c",
|
273 |
"metadata": {},
|
274 |
-
"outputs": [
|
275 |
-
{
|
276 |
-
"name": "stdout",
|
277 |
-
"output_type": "stream",
|
278 |
-
"text": [
|
279 |
-
"Closing server running on port: 7861\n"
|
280 |
-
]
|
281 |
-
}
|
282 |
-
],
|
283 |
"source": [
|
284 |
"#| hide\n",
|
285 |
"app.close()"
|
|
|
15 |
"execution_count": null,
|
16 |
"id": "667802a7-0f36-4136-a381-e66210b20462",
|
17 |
"metadata": {},
|
18 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"source": [
|
20 |
"#| export\n",
|
21 |
"#tts_openai_secrets.py content:\n",
|
|
|
65 |
"source": [
|
66 |
"#| export\n",
|
67 |
"import gradio as gr\n",
|
68 |
+
"import openai\n",
|
69 |
+
"from pydub import AudioSegment\n",
|
70 |
+
"import io"
|
71 |
]
|
72 |
},
|
73 |
{
|
|
|
75 |
"execution_count": null,
|
76 |
"id": "0ffd33b4-cb9b-4c01-bff6-4c3102854ab6",
|
77 |
"metadata": {},
|
78 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
"source": [
|
80 |
"#| export\n",
|
81 |
"try:\n",
|
|
|
96 |
"tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']"
|
97 |
]
|
98 |
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"id": "24674094-4d47-4e48-b591-55faabcff8df",
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"#| export\n",
|
107 |
+
"def split_text(input_text, max_length=4000, lookback=1000):\n",
|
108 |
+
" # If the text is shorter than the max_length, return it as is\n",
|
109 |
+
" if len(input_text) <= max_length:\n",
|
110 |
+
" return [input_text]\n",
|
111 |
+
"\n",
|
112 |
+
" chunks = []\n",
|
113 |
+
" while input_text:\n",
|
114 |
+
" # Check if the remaining text is shorter than the max_length\n",
|
115 |
+
" if len(input_text) <= max_length:\n",
|
116 |
+
" chunks.append(input_text)\n",
|
117 |
+
" break\n",
|
118 |
+
"\n",
|
119 |
+
" # Define the split point, initially set to max_length\n",
|
120 |
+
" split_point = max_length\n",
|
121 |
+
"\n",
|
122 |
+
" # Look for a newline in the last 'lookback' characters\n",
|
123 |
+
" newline_index = input_text.rfind('\\n', max_length-lookback, max_length)\n",
|
124 |
+
" if newline_index != -1:\n",
|
125 |
+
" split_point = newline_index + 1 # Include the newline in the current chunk\n",
|
126 |
+
"\n",
|
127 |
+
" # If no newline, look for a period followed by space\n",
|
128 |
+
" elif '. ' in input_text[max_length-lookback:max_length]:\n",
|
129 |
+
" # Find the last '. ' in the lookback range\n",
|
130 |
+
" period_index = input_text.rfind('. ', max_length-lookback, max_length)\n",
|
131 |
+
" split_point = period_index + 2 # Split after the space\n",
|
132 |
+
"\n",
|
133 |
+
" # Split the text and update the input_text\n",
|
134 |
+
" chunks.append(input_text[:split_point])\n",
|
135 |
+
" input_text = input_text[split_point:]\n",
|
136 |
+
"\n",
|
137 |
+
" return chunks"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": null,
|
143 |
+
"id": "e6224ae5-3792-42b2-8392-3abd42998a50",
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": [
|
147 |
+
"#| export\n",
|
148 |
+
"def concatenate_mp3(mp3_files):\n",
|
149 |
+
" if len(mp3_files) == 1:\n",
|
150 |
+
" return mp3_files[0]\n",
|
151 |
+
" else:\n",
|
152 |
+
" # Initialize an empty AudioSegment object for concatenation\n",
|
153 |
+
" combined = AudioSegment.empty()\n",
|
154 |
+
" \n",
|
155 |
+
" # Write out audio file responses as individual files for debugging\n",
|
156 |
+
" # for idx, mp3_data in enumerate(mp3_files):\n",
|
157 |
+
" # with open(f'./{idx}.mp3', 'wb') as f:\n",
|
158 |
+
" # f.write(mp3_data)\n",
|
159 |
+
"\n",
|
160 |
+
" # Loop through the list of mp3 binary data\n",
|
161 |
+
" for mp3_data in mp3_files:\n",
|
162 |
+
" # Convert binary data to an audio segment\n",
|
163 |
+
" audio_segment = AudioSegment.from_file(io.BytesIO(mp3_data), format=\"mp3\")\n",
|
164 |
+
" # Concatenate this segment to the combined segment\n",
|
165 |
+
" combined += audio_segment\n",
|
166 |
+
"\n",
|
167 |
+
" # Export the combined segment to a new mp3 file\n",
|
168 |
+
" # Use a BytesIO object to handle this in memory\n",
|
169 |
+
" combined_mp3 = io.BytesIO()\n",
|
170 |
+
" combined.export(combined_mp3, format=\"mp3\")\n",
|
171 |
+
"\n",
|
172 |
+
" # Seek to the start so it's ready for reading\n",
|
173 |
+
" combined_mp3.seek(0)\n",
|
174 |
+
"\n",
|
175 |
+
" return combined_mp3.getvalue()"
|
176 |
+
]
|
177 |
+
},
|
178 |
{
|
179 |
"cell_type": "code",
|
180 |
"execution_count": null,
|
|
|
183 |
"outputs": [],
|
184 |
"source": [
|
185 |
"#| export\n",
|
186 |
+
"def create_speech(input_text, model='tts-1', voice='alloy', progress=gr.Progress()):\n",
|
187 |
+
" # Split the input text into chunks\n",
|
188 |
+
" chunks = split_text(input_text)\n",
|
189 |
+
"\n",
|
190 |
+
" # Initialize the progress bar\n",
|
191 |
+
" progress(0, desc=\"Starting TTS processing...\")\n",
|
192 |
+
"\n",
|
193 |
+
" # Initialize a list to hold the audio data of each chunk\n",
|
194 |
+
" audio_data = []\n",
|
195 |
+
"\n",
|
196 |
+
" # Create a client instance for OpenAI\n",
|
197 |
" client = openai.OpenAI()\n",
|
198 |
+
"\n",
|
199 |
+
" # Calculate the progress increment for each chunk\n",
|
200 |
+
" progress_increment = 1.0 / len(chunks)\n",
|
201 |
+
"\n",
|
202 |
+
" # Process each chunk\n",
|
203 |
+
" for i, chunk in enumerate(chunks):\n",
|
204 |
+
" response = client.audio.speech.create(\n",
|
205 |
+
" model=model,\n",
|
206 |
+
" voice=voice,\n",
|
207 |
+
" input=chunk,\n",
|
208 |
+
" speed=1.0\n",
|
209 |
+
" )\n",
|
210 |
+
" # Append the audio content of the response to the list\n",
|
211 |
+
" audio_data.append(response.content)\n",
|
212 |
+
"\n",
|
213 |
+
" # Update the progress bar\n",
|
214 |
+
" progress((i + 1) * progress_increment, desc=f\"Processing chunk {i + 1} of {len(chunks)}\")\n",
|
215 |
+
"\n",
|
216 |
+
" # Close the client connection\n",
|
217 |
" client.close()\n",
|
218 |
+
"\n",
|
219 |
+
" # Concatenate the audio data from all chunks\n",
|
220 |
+
" combined_audio = concatenate_mp3(audio_data)\n",
|
221 |
+
"\n",
|
222 |
+
" # Final update to the progress bar\n",
|
223 |
+
" progress(1, desc=\"Processing completed\")\n",
|
224 |
+
"\n",
|
225 |
+
" return combined_audio\n"
|
226 |
]
|
227 |
},
|
228 |
{
|
|
|
280 |
"execution_count": null,
|
281 |
"id": "4b534fe7-4337-423e-846a-1bdb7cccc4ea",
|
282 |
"metadata": {},
|
283 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
"source": [
|
285 |
"#| hide\n",
|
286 |
"#Notebook launch\n",
|
|
|
292 |
"execution_count": null,
|
293 |
"id": "cb886d45",
|
294 |
"metadata": {},
|
295 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
"source": [
|
297 |
"#| export\n",
|
298 |
"#.py launch\n",
|
|
|
305 |
"execution_count": null,
|
306 |
"id": "28e8d888-e790-46fa-bbac-4511b9ab796c",
|
307 |
"metadata": {},
|
308 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
"source": [
|
310 |
"#| hide\n",
|
311 |
"app.close()"
|
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
-
__all__ = ['secret_import_failed', 'tts_voices', 'launch_kwargs', '
|
|
|
5 |
|
6 |
# %% app.ipynb 1
|
7 |
#tts_openai_secrets.py content:
|
@@ -30,6 +31,8 @@ if secret_import_failed == True:
|
|
30 |
# %% app.ipynb 3
|
31 |
import gradio as gr
|
32 |
import openai
|
|
|
|
|
33 |
|
34 |
# %% app.ipynb 4
|
35 |
try:
|
@@ -42,22 +45,116 @@ except:
|
|
42 |
tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']
|
43 |
|
44 |
# %% app.ipynb 6
|
45 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
client = openai.OpenAI()
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
client.close()
|
54 |
-
return response.content
|
55 |
|
56 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def get_input_text_len(input_text):
|
58 |
return len(input_text)
|
59 |
|
60 |
-
# %% app.ipynb
|
61 |
with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
|
62 |
gr.Markdown("# OpenAI TTS")
|
63 |
gr.Markdown("Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.")
|
@@ -75,11 +172,11 @@ with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
|
|
75 |
clear_btn.click(fn=lambda: '', outputs=input_text)
|
76 |
|
77 |
|
78 |
-
# %% app.ipynb
|
79 |
launch_kwargs = {'auth':('username',GRADIO_PASSWORD),
|
80 |
'auth_message':'Please log in to Mat\'s TTS App with username: username and password.'}
|
81 |
|
82 |
-
# %% app.ipynb
|
83 |
#.py launch
|
84 |
if __name__ == "__main__":
|
85 |
app.launch(**launch_kwargs)
|
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
+
__all__ = ['secret_import_failed', 'tts_voices', 'launch_kwargs', 'split_text', 'concatenate_mp3', 'create_speech',
|
5 |
+
'get_input_text_len']
|
6 |
|
7 |
# %% app.ipynb 1
|
8 |
#tts_openai_secrets.py content:
|
|
|
31 |
# %% app.ipynb 3
|
32 |
import gradio as gr
|
33 |
import openai
|
34 |
+
from pydub import AudioSegment
|
35 |
+
import io
|
36 |
|
37 |
# %% app.ipynb 4
|
38 |
try:
|
|
|
45 |
tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']
|
46 |
|
47 |
# %% app.ipynb 6
|
48 |
+
def split_text(input_text, max_length=4000, lookback=1000):
|
49 |
+
# If the text is shorter than the max_length, return it as is
|
50 |
+
if len(input_text) <= max_length:
|
51 |
+
return [input_text]
|
52 |
+
|
53 |
+
chunks = []
|
54 |
+
while input_text:
|
55 |
+
# Check if the remaining text is shorter than the max_length
|
56 |
+
if len(input_text) <= max_length:
|
57 |
+
chunks.append(input_text)
|
58 |
+
break
|
59 |
+
|
60 |
+
# Define the split point, initially set to max_length
|
61 |
+
split_point = max_length
|
62 |
+
|
63 |
+
# Look for a newline in the last 'lookback' characters
|
64 |
+
newline_index = input_text.rfind('\n', max_length-lookback, max_length)
|
65 |
+
if newline_index != -1:
|
66 |
+
split_point = newline_index + 1 # Include the newline in the current chunk
|
67 |
+
|
68 |
+
# If no newline, look for a period followed by space
|
69 |
+
elif '. ' in input_text[max_length-lookback:max_length]:
|
70 |
+
# Find the last '. ' in the lookback range
|
71 |
+
period_index = input_text.rfind('. ', max_length-lookback, max_length)
|
72 |
+
split_point = period_index + 2 # Split after the space
|
73 |
+
|
74 |
+
# Split the text and update the input_text
|
75 |
+
chunks.append(input_text[:split_point])
|
76 |
+
input_text = input_text[split_point:]
|
77 |
+
|
78 |
+
return chunks
|
79 |
+
|
80 |
+
# %% app.ipynb 7
|
81 |
+
def concatenate_mp3(mp3_files):
|
82 |
+
if len(mp3_files) == 1:
|
83 |
+
return mp3_files[0]
|
84 |
+
else:
|
85 |
+
# Initialize an empty AudioSegment object for concatenation
|
86 |
+
combined = AudioSegment.empty()
|
87 |
+
|
88 |
+
# Write out audio file responses as individual files for debugging
|
89 |
+
# for idx, mp3_data in enumerate(mp3_files):
|
90 |
+
# with open(f'./{idx}.mp3', 'wb') as f:
|
91 |
+
# f.write(mp3_data)
|
92 |
+
|
93 |
+
# Loop through the list of mp3 binary data
|
94 |
+
for mp3_data in mp3_files:
|
95 |
+
# Convert binary data to an audio segment
|
96 |
+
audio_segment = AudioSegment.from_file(io.BytesIO(mp3_data), format="mp3")
|
97 |
+
# Concatenate this segment to the combined segment
|
98 |
+
combined += audio_segment
|
99 |
+
|
100 |
+
# Export the combined segment to a new mp3 file
|
101 |
+
# Use a BytesIO object to handle this in memory
|
102 |
+
combined_mp3 = io.BytesIO()
|
103 |
+
combined.export(combined_mp3, format="mp3")
|
104 |
+
|
105 |
+
# Seek to the start so it's ready for reading
|
106 |
+
combined_mp3.seek(0)
|
107 |
+
|
108 |
+
return combined_mp3.getvalue()
|
109 |
+
|
110 |
+
# %% app.ipynb 8
|
111 |
+
def create_speech(input_text, model='tts-1', voice='alloy', progress=gr.Progress()):
|
112 |
+
# Split the input text into chunks
|
113 |
+
chunks = split_text(input_text)
|
114 |
+
|
115 |
+
# Initialize the progress bar
|
116 |
+
progress(0, desc="Starting TTS processing...")
|
117 |
+
|
118 |
+
# Initialize a list to hold the audio data of each chunk
|
119 |
+
audio_data = []
|
120 |
+
|
121 |
+
# Create a client instance for OpenAI
|
122 |
client = openai.OpenAI()
|
123 |
+
|
124 |
+
# Calculate the progress increment for each chunk
|
125 |
+
progress_increment = 1.0 / len(chunks)
|
126 |
+
|
127 |
+
# Process each chunk
|
128 |
+
for i, chunk in enumerate(chunks):
|
129 |
+
response = client.audio.speech.create(
|
130 |
+
model=model,
|
131 |
+
voice=voice,
|
132 |
+
input=chunk,
|
133 |
+
speed=1.0
|
134 |
+
)
|
135 |
+
# Append the audio content of the response to the list
|
136 |
+
audio_data.append(response.content)
|
137 |
+
|
138 |
+
# Update the progress bar
|
139 |
+
progress((i + 1) * progress_increment, desc=f"Processing chunk {i + 1} of {len(chunks)}")
|
140 |
+
|
141 |
+
# Close the client connection
|
142 |
client.close()
|
|
|
143 |
|
144 |
+
# Concatenate the audio data from all chunks
|
145 |
+
combined_audio = concatenate_mp3(audio_data)
|
146 |
+
|
147 |
+
# Final update to the progress bar
|
148 |
+
progress(1, desc="Processing completed")
|
149 |
+
|
150 |
+
return combined_audio
|
151 |
+
|
152 |
+
|
153 |
+
# %% app.ipynb 9
|
154 |
def get_input_text_len(input_text):
|
155 |
return len(input_text)
|
156 |
|
157 |
+
# %% app.ipynb 10
|
158 |
with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
|
159 |
gr.Markdown("# OpenAI TTS")
|
160 |
gr.Markdown("Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.")
|
|
|
172 |
clear_btn.click(fn=lambda: '', outputs=input_text)
|
173 |
|
174 |
|
175 |
+
# %% app.ipynb 11
|
176 |
launch_kwargs = {'auth':('username',GRADIO_PASSWORD),
|
177 |
'auth_message':'Please log in to Mat\'s TTS App with username: username and password.'}
|
178 |
|
179 |
+
# %% app.ipynb 13
|
180 |
#.py launch
|
181 |
if __name__ == "__main__":
|
182 |
app.launch(**launch_kwargs)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
-
openai==1.
|
2 |
-
gradio==4.
|
|
|
|
1 |
+
openai==1.10.0
|
2 |
+
gradio==4.16.0
|
3 |
+
pydub==0.25.1
|