File size: 13,240 Bytes
afc04de
 
ba0edd3
 
afc04de
 
ba0edd3
16a13c4
037096a
f73715c
ba0edd3
c8f3971
afc04de
 
ba0edd3
e2368fc
ba0edd3
55aa46e
38d5aa5
877632c
c8f3971
7ba24b6
 
c8f3971
 
ba0edd3
 
 
 
 
 
 
 
 
afc04de
ba0edd3
afc04de
 
 
 
ba0edd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afc04de
ba0edd3
 
c8f3971
afc04de
 
 
ba0edd3
afc04de
c8f3971
afc04de
 
 
 
 
ba0edd3
afc04de
 
ba0edd3
 
 
 
 
 
c8f3971
afc04de
 
 
 
 
 
 
 
 
ba0edd3
afc04de
ba0edd3
 
 
 
 
afc04de
ba0edd3
afc04de
ba0edd3
afc04de
 
 
ba0edd3
 
 
 
 
afc04de
 
ba0edd3
 
 
afc04de
ba0edd3
c8f3971
1f1f572
ba0edd3
 
 
 
 
 
 
 
 
 
 
 
afc04de
ba0edd3
 
afc04de
 
 
 
 
 
 
 
ba0edd3
 
afc04de
 
ba0edd3
afc04de
 
ba0edd3
afc04de
 
 
ba0edd3
 
 
 
 
afc04de
ba0edd3
 
 
 
 
 
 
 
 
 
afc04de
ba0edd3
afc04de
 
 
 
 
 
 
ba0edd3
 
afc04de
ba0edd3
 
afc04de
ba0edd3
 
afc04de
 
 
ba0edd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d96f949
 
e2368fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414e58a
758e4e6
3954ce3
 
 
 
 
 
 
 
 
 
 
a050774
f585c77
 
3954ce3
 
 
a050774
3954ce3
 
 
8326f1d
3954ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695706a
e2368fc
695706a
e2368fc
 
f585c77
e2368fc
 
695706a
 
f585c77
 
e2368fc
 
f585c77
 
 
 
 
 
 
 
 
 
 
 
8e1d9fb
8c8c54e
ba0edd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8cab0
7ba24b6
55aa46e
30183b5
 
 
 
 
edddec9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
from pydantic import BaseModel
from typing import Optional
import io

import pymupdf
import docx
from pptx import Presentation

from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.responses import StreamingResponse
from fastapi.responses import PlainTextResponse

import uvicorn 

app = FastAPI()

@app.post("/test/")
async def test_endpoint(message: dict):
    if "text" not in message:
        raise HTTPException(status_code=400, detail="Missing 'text' in request body")
    
    response = {"message": f"Received your message: {message['text']}"}
    return response


MODEL_LIST = ["nikravan/glm-4vq"]

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = MODEL_LIST[0]
MODEL_NAME = "GLM-4vq"

TITLE = "<h1>AI CHAT DOCS</h1>"

DESCRIPTION = f"""
<center>
<p> 
<br>
USANDO MODELO: <a href="https://hf.co/nikravan/glm-4vq">{MODEL_NAME}</a>
</center>"""

CSS = """
h1 {
    text-align: center;
    display: block;
}
"""


tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)



def extract_text(path):
    return open(path, 'r').read()


def extract_pdf(path):
    doc = pymupdf.open(path)
    text = ""
    for page in doc:
        text += page.get_text()
    return text


def extract_docx(path):
    doc = docx.Document(path)
    data = []
    for paragraph in doc.paragraphs:
        data.append(paragraph.text)
    content = '\n\n'.join(data)
    return content


def extract_pptx(path):
    prs = Presentation(path)
    text = ""
    for slide in prs.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text += shape.text + "\n"
    return text


def mode_load(path):
    choice = ""
    file_type = path.split(".")[-1]
    print(file_type)
    if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
        if file_type.endswith("pdf"):
            content = extract_pdf(path)
        elif file_type.endswith("docx"):
            content = extract_docx(path)
        elif file_type.endswith("pptx"):
            content = extract_pptx(path)
        else:
            content = extract_text(path)
        choice = "doc"
        print(content[:100])
        return choice, content[:5000]


    elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
        content = Image.open(path).convert('RGB')
        choice = "image"
        return choice, content

    else:
        raise gr.Error("Oops, unsupported files.")


@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
    
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        trust_remote_code=True
    )
        
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    prompt_files = []
    if message["files"]:
        choice, contents = mode_load(message["files"][-1])
        if choice == "image":
            conversation.append({"role": "user", "image": contents, "content": message['text']})
        elif choice == "doc":
            format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
            conversation.append({"role": "user", "content": format_msg})
    else:
        if len(history) == 0:
            # raise gr.Error("Please upload an image first.")
            contents = None
            conversation.append({"role": "user", "content": message['text']})
        else:
            # image = Image.open(history[0][0][0])
            for prompt, answer in history:
                if answer is None:
                    prompt_files.append(prompt[0])
                    conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
                else:
                    conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
            if len(prompt_files) > 0:
                choice, contents = mode_load(prompt_files[-1])
            else:
                choice = ""
                conversation.append({"role": "user", "image": "", "content": message['text']})


            if choice == "image":
                conversation.append({"role": "user", "image": contents, "content": message['text']})
            elif choice == "doc":
                format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
                conversation.append({"role": "user", "content": format_msg})
    print(f"Conversation is -\n{conversation}")

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
                                              return_tensors="pt", return_dict=True).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        max_length=max_length,
        streamer=streamer,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        eos_token_id=[151329, 151336, 151338],
    )
    gen_kwargs = {**input_ids, **generate_kwargs}

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield buffer


chatbot = gr.Chatbot(
    #rtl=True,
)
chat_input = gr.MultimodalTextbox(
    interactive=True,
    placeholder="Enter message or upload a file ...",
    show_label=False,
    #rtl=True,



)

EXAMPLES = [
    [{"text": "Resumir Documento"}],
    [{"text": "Explicar la Imagen"}],
    [{"text": "¿De qué es la foto?", "files": ["perro.jpg"]}],
    [{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
]


# Definir la función simple_chat
# @spaces.GPU()
# def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
#     try:
#         model = AutoModelForCausalLM.from_pretrained(
#             MODEL_ID,
#             torch_dtype=torch.bfloat16,
#             low_cpu_mem_usage=True,
#             trust_remote_code=True
#         )

#         conversation = []

#         if "file" in message and message["file"]:
#             file_path = message["file"]
#             choice, contents = mode_load(file_path)
#             if choice == "image":
#                 conversation.append({"role": "user", "image": contents, "content": message["text"]})
#             elif choice == "doc":
#                 format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message["text"]
#                 conversation.append({"role": "user", "content": format_msg})
#         else:
#             conversation.append({"role": "user", "content": message["text"]})

#         input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
        
#         generate_kwargs = dict(
#             max_length=max_length,
#             do_sample=True,
#             top_p=top_p,
#             top_k=top_k,
#             temperature=temperature,
#             repetition_penalty=penalty,
#             eos_token_id=[151329, 151336, 151338],
#         )

#         with torch.no_grad():
#             generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
#             generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

#         return PlainTextResponse(generated_text)
#     except Exception as e:
#         return PlainTextResponse(f"Error: {str(e)}")

# @app.post("/chat/")
# async def test_endpoint(message: dict):
#     if "text" not in message:
#         raise HTTPException(status_code=400, detail="Missing 'text' in request body")

#     if "file" not in message:
#         print("Sin File")
    
#     response = simple_chat(message)
#     return response


@spaces.GPU()
def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
    try:
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16,
            low_cpu_mem_usage=True,
            trust_remote_code=True
        )

        conversation = []

        if "file" in message and message["file"]:
            file_contents = message["file"]
            # Aquí debes asegurarte de que `mode_load` pueda manejar `file_contents` como bytes
            choice, contents = mode_load(io.BytesIO(file_contents))
            if choice == "image":
                conversation.append({"role": "user", "image": contents, "content": message["text"]})
            elif choice == "doc":
                format_msg = contents + "\n\n\n" + "{} files uploaded.\n".format("1") + message["text"]
                conversation.append({"role": "user", "content": format_msg})
        else:
            conversation.append({"role": "user", "content": message["text"]})

        input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
        
        generate_kwargs = dict(
            max_length=max_length,
            do_sample=True,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            repetition_penalty=penalty,
            eos_token_id=[151329, 151336, 151338],
        )

        with torch.no_grad():
            generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
            generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

        return PlainTextResponse(generated_text)
    except Exception as e:
        return PlainTextResponse(f"Error: {str(e)}")


@app.post("/chat/")
async def test_endpoint(
    text: str = Form(...),
    file: Optional[UploadFile] = File(None)
):
    if not text:
        raise HTTPException(status_code=400, detail="Missing 'text' in request body")

    # Lee el archivo si está presente
    file_contents = None
    if file:
        file_contents = await file.read()

    # Construye el diccionario para `simple_chat`
    message = {
        "text": text,
        "file": file_contents
    }

    print(message)

    # Llama a `simple_chat` con el diccionario
    response = simple_chat(message)
    return response


with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,


        textbox=chat_input,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=1024,
                maximum=8192,
                step=1,
                value=4096,
                label="Max Length",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=10,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
    ),
    gr.Examples(EXAMPLES, [chat_input])

if __name__ == "__main__":

    app = gr.mount_gradio_app(app, demo, "/")
    uvicorn.run(app, host="0.0.0.0", port=7860)

    #app.mount("/static", StaticFiles(directory="static", html=True), name="static")
    # app = gr.mount_gradio_app(app, block, "/", gradio_api_url="http://localhost:7860/")
    # uvicorn.run(app, host="0.0.0.0", port=7860)
    
    demo.queue(api_open=False).launch(show_api=False, share=False, )#server_name="0.0.0.0", )