Spaces:
Running
Running
File size: 12,825 Bytes
afc04de ba0edd3 afc04de ba0edd3 16a13c4 037096a f73715c 340ee67 ba0edd3 c8f3971 afc04de ba0edd3 e2368fc ba0edd3 55aa46e 38d5aa5 877632c c8f3971 7ba24b6 b8e22ba 7ba24b6 c8f3971 ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 c8f3971 afc04de ba0edd3 afc04de c8f3971 afc04de ba0edd3 afc04de ba0edd3 c8f3971 afc04de ba0edd3 5d57345 befd71c 5d57345 befd71c 5d57345 befd71c 5d57345 befd71c 5d57345 befd71c 5d57345 befd71c 5d57345 befd71c 5d57345 befd71c 5d57345 2a0024c 1f1f572 ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 afc04de ba0edd3 f4520a3 d413725 f4520a3 29e870f 3027b6d d413725 f4520a3 1681852 bf31139 192f8cc bf31139 192f8cc f4520a3 1681852 f4520a3 1681852 b4bc826 f4520a3 3027b6d f4520a3 e29fb77 30a65a8 84d2c5c 30a65a8 84d2c5c 30a65a8 47f4229 aaf15d8 dd93766 acd8e3d 47f4229 47616a8 47f4229 0a3a3ec 47f4229 09f0255 47616a8 09f0255 47616a8 09f0255 69669db 09f0255 1681852 47616a8 0cd233e 1681852 fd60824 b4bc826 1681852 b4bc826 1681852 b4bc826 1681852 8e1d9fb 8c8c54e ba0edd3 6d8cab0 7ba24b6 55aa46e 30183b5 edddec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
from pydantic import BaseModel
from typing import Optional
import io
from io import BytesIO
import pymupdf
import docx
from pptx import Presentation
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.responses import StreamingResponse
from fastapi.responses import PlainTextResponse
import uvicorn
import json
app = FastAPI()
@app.post("/test/")
async def test_endpoint(message: dict):
if "text" not in message:
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
response = {"message": f"Received your message: {message['text']}"}
return response
MODEL_LIST = ["nikravan/glm-4vq"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = MODEL_LIST[0]
MODEL_NAME = "GLM-4vq"
TITLE = "<h1>AI CHAT DOCS</h1>"
DESCRIPTION = f"""
<center>
<p>
<br>
USANDO MODELO: <a href="https://hf.co/nikravan/glm-4vq">{MODEL_NAME}</a>
</center>"""
CSS = """
h1 {
text-align: center;
display: block;
}
"""
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
def extract_text(path):
return open(path, 'r').read()
def extract_pdf(path):
doc = pymupdf.open(path)
text = ""
for page in doc:
text += page.get_text()
return text
def extract_docx(path):
doc = docx.Document(path)
data = []
for paragraph in doc.paragraphs:
data.append(paragraph.text)
content = '\n\n'.join(data)
return content
def extract_pptx(path):
prs = Presentation(path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
# def mode_load(path):
# choice = ""
# file_type = path.split(".")[-1]
# print(file_type)
# if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
# if file_type.endswith("pdf"):
# content = extract_pdf(path)
# elif file_type.endswith("docx"):
# content = extract_docx(path)
# elif file_type.endswith("pptx"):
# content = extract_pptx(path)
# else:
# content = extract_text(path)
# choice = "doc"
# print(content[:100])
# return choice, content[:5000]
# elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
# content = Image.open(path).convert('RGB')
# choice = "image"
# return choice, content
# else:
# raise gr.Error("Oops, unsupported files.")
def mode_load(path):
choice = ""
file_type = path.split(".")[-1].lower()
print(file_type)
if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
if file_type == "pdf":
content = extract_pdf(path)
elif file_type == "docx":
content = extract_docx(path)
elif file_type == "pptx":
content = extract_pptx(path)
else:
content = extract_text(path)
choice = "doc"
print(content[:100])
return choice, content[:5000]
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
try:
content = Image.open(path).convert('RGB')
choice = "image"
return choice, content
except Exception as e:
raise ValueError(f"Error processing image file: {e}")
else:
raise ValueError("Oops, unsupported file type.")
@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
)
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
prompt_files = []
if message["files"]:
choice, contents = mode_load(message["files"][-1])
if choice == "image":
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif choice == "doc":
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
conversation.append({"role": "user", "content": format_msg})
else:
if len(history) == 0:
# raise gr.Error("Please upload an image first.")
contents = None
conversation.append({"role": "user", "content": message['text']})
else:
# image = Image.open(history[0][0][0])
for prompt, answer in history:
if answer is None:
prompt_files.append(prompt[0])
conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
else:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
if len(prompt_files) > 0:
choice, contents = mode_load(prompt_files[-1])
else:
choice = ""
conversation.append({"role": "user", "image": "", "content": message['text']})
if choice == "image":
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif choice == "doc":
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
conversation.append({"role": "user", "content": format_msg})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[151329, 151336, 151338],
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(
#rtl=True,
)
chat_input = gr.MultimodalTextbox(
interactive=True,
placeholder="Enter message or upload a file ...",
show_label=False,
#rtl=True,
)
EXAMPLES = [
[{"text": "Resumir Documento"}],
[{"text": "Explicar la Imagen"}],
[{"text": "¿De qué es la foto?", "files": ["perro.jpg"]}],
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
]
@spaces.GPU()
def simple_chat(message, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
)
print(f'Message is - {message}')
conversation = []
if message["file_content"]:
with open(message['file_name'], 'wb') as temp_file:
temp_file.write(message['file_content'].read())
temp_file_path = temp_file.name
choice, contents = mode_load(temp_file_path)
if choice == "image":
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif choice == "doc":
format_msg = contents + "\n\n\n" + "{} files uploaded.\n".format(message['file_name']) + message['text']
conversation.append({"role": "user", "content": format_msg})
else:
conversation.append({"role": "user", "content": message['text']})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[151329, 151336, 151338],
)
gen_kwargs = {**input_ids, **generate_kwargs}
buffer = ""
def generate_text():
nonlocal buffer
with torch.no_grad():
model.generate(**gen_kwargs)
for new_text in streamer:
buffer += new_text
thread = Thread(target=generate_text)
thread.start()
thread.join()
try:
buffer = buffer.strip()
buffer = buffer.strip('`')
buffer = buffer.strip('json')
json_content = json.loads(buffer)
formatted_text = format_json_to_string(json_content)
except json.JSONDecodeError:
print("entro error")
formatted_text = buffer
print("---------")
print("Respuesta: ")
print(" ")
print(formatted_text)
print(" ")
print("---------")
return PlainTextResponse(formatted_text)
def format_json_to_string(json_content):
return json.dumps(json_content, ensure_ascii=False)
@app.post("/chat/")
async def test_endpoint(
text: str = Form(...),
file: UploadFile = File(None)
):
if file:
file_content = BytesIO(await file.read())
file_name = file.filename
message = {
"text": text,
"file_content": file_content,
"file_name": file_name
}
else:
message = {
"text": text,
"file_content": None,
"file_name": None
}
print(message)
response = simple_chat(message)
return response
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=8192,
step=1,
value=4096,
label="Max Length",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=10,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
),
gr.Examples(EXAMPLES, [chat_input])
if __name__ == "__main__":
app = gr.mount_gradio_app(app, demo, "/")
uvicorn.run(app, host="0.0.0.0", port=7860)
#app.mount("/static", StaticFiles(directory="static", html=True), name="static")
# app = gr.mount_gradio_app(app, block, "/", gradio_api_url="http://localhost:7860/")
# uvicorn.run(app, host="0.0.0.0", port=7860)
demo.queue(api_open=False).launch(show_api=False, share=False, )#server_name="0.0.0.0", ) |