from typing import Optional import gradio as gr import numpy as np import torch from PIL import Image import io import base64 import os from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img # Load YOLO and caption model yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt') # Use only the "blip2" model caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2") # Markdown content for the UI MARKDOWN = """ # OmniParser for Pure Vision Based General GUI Agent 🔥
Arxiv
OmniParser is a screen parsing tool to convert general GUI screen to structured elements. """ # Force CPU usage DEVICE = torch.device('cpu') os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable any GPU devices def process( image_input, box_threshold, iou_threshold, use_paddleocr, imgsz ) -> Optional[Image.Image]: image_save_path = 'imgs/saved_image_demo.png' image_input.save(image_save_path) image = Image.open(image_save_path) box_overlay_ratio = image.size[0] / 3200 draw_bbox_config = { 'text_scale': 0.8 * box_overlay_ratio, 'text_thickness': max(int(2 * box_overlay_ratio), 1), 'text_padding': max(int(3 * box_overlay_ratio), 1), 'thickness': max(int(3 * box_overlay_ratio), 1), } # Process OCR and label the image ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img=False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr) text, ocr_bbox = ocr_bbox_rslt dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img( image_save_path, yolo_model, BOX_TRESHOLD=box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox, draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text, iou_threshold=iou_threshold, imgsz=imgsz ) image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) print('finish processing') parsed_content_list = '\n'.join(parsed_content_list) return image, str(parsed_content_list) # Gradio UI setup with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): image_input_component = gr.Image(type='pil', label='Upload image') box_threshold_component = gr.Slider(label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) iou_threshold_component = gr.Slider(label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) use_paddleocr_component = gr.Checkbox(label='Use PaddleOCR', value=True) imgsz_component = gr.Slider(label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640) submit_button_component = gr.Button(value='Submit', variant='primary') with gr.Column(): image_output_component = gr.Image(type='pil', label='Image Output') text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output') submit_button_component.click( fn=process, inputs=[image_input_component, box_threshold_component, iou_threshold_component, use_paddleocr_component, imgsz_component], outputs=[image_output_component, text_output_component] ) demo.launch(share=True, server_port=7861, server_name='0.0.0.0')