Spaces:
Sleeping
Sleeping
import gradio as gr | |
import joblib | |
import pandas as pd | |
import numpy as np | |
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder | |
from sklearn.impute import KNNImputer | |
from sklearn.decomposition import PCA | |
# Load your saved model | |
# model = joblib.load("ann_model.joblib") | |
# # Define the prediction function | |
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country): | |
features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country] | |
columns = [ | |
"age", "workclass", "educational-num", "marital-status", "occupation", | |
"relationship", "race", "gender", "capital-gain", "capital-loss", | |
"hours-per-week", "native-country"] | |
df = pd.DataFrame(index=features, columns=columns) | |
fixed_features = cleaning_features(df) | |
# prediction = model.predict(features) | |
# prediction = 1 | |
# return "Income >50K" if prediction == 1 else "Income <=50K" | |
return print(fixed_features) | |
def cleaning_features(data): | |
le = LabelEncoder() | |
scaler = StandardScaler() | |
encoder = OneHotEncoder(sparse=False) | |
numeric_cols = ['age', 'educational-num', 'hours-per-week'] | |
columns_to_encode = ['race','marital-status','relationship'] | |
# 1. Scale numerical features | |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols]) | |
# 2. Label encode gender and income | |
data['gender'] = le.fit_transform(data['gender']) | |
data['educational-num'] = le.fit_transform(data['educational-num']) | |
# 3. One-hot encode race | |
for N in columns_to_encode: | |
race_encoded = encoder.fit_transform(data[[N]]) | |
race_encoded_cols = encoder.get_feature_names_out([N]) | |
race_encoded_df = pd.DataFrame(race_encoded, columns=race_encoded_cols, index=data.index) | |
# Combine the encoded data with original dataframe | |
data = pd.concat([data.drop(N, axis=1), race_encoded_df], axis=1) | |
# Binarize native country | |
data['native-country'] = data['native-country'].apply(lambda x: x == 'United-States') | |
data['native-country'] = data['native-country'].astype(int) | |
data = pca(data) | |
return data | |
# def pca(data): | |
# encoder = OneHotEncoder(sparse_output=False) | |
# one_hot_encoded = encoder.fit_transform(data[['workclass', 'occupation']]) | |
# encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out()) | |
# pca_net = PCA(n_components=10) | |
# pca_result_net = pca_net.fit_transform(encoded_columns_df) | |
# pca_columns = [f'pca_component_{i+1}' for i in range(10)] | |
# pca_df = pd.DataFrame(pca_result_net, columns=pca_columns) | |
# data = data.drop(columns=['workclass', 'occupation'], axis=1) #remove the original columns | |
# data = pd.concat([data, pca_df], axis=1) | |
# return data | |
def pca(data): | |
encoder = joblib.load('onehot_encoder.joblib') | |
pca_model = joblib.load('pca.joblib') | |
one_hot_encoded = encoder.transform(data[['workclass', 'occupation']]) | |
encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out()) | |
pca_result_net = pca_model.transform(encoded_columns_df) | |
pca_columns = [f'pca_component_{i+1}' for i in range(pca_model.n_components_)] | |
pca_df = pd.DataFrame(pca_result_net, columns=pca_columns) | |
data = data.drop(columns=['workclass', 'occupation'], axis=1) | |
data = pd.concat([data, pca_df], axis=1) | |
return data | |
def hbdscan_tranform(df_transformed): | |
df_transformed['capital-gain'] = np.log1p(df_transformed['capital-gain']) | |
df_transformed['capital-loss'] = np.log1p(df_transformed['capital-loss']) | |
# Apply RobustScaler to all numerical features | |
numerical_features = ['age', 'capital-gain', 'capital-loss', 'hours-per-week'] | |
scaler = RobustScaler() | |
df_transformed[numerical_features] = scaler.fit_transform(df_transformed[numerical_features]) | |
return df_transformed | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Slider(18, 90, step=1, label="Age"), | |
gr.Dropdown( | |
["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", | |
"Local-gov", "State-gov", "Without-pay", "Never-worked"], | |
label="Workclass" | |
), | |
gr.Dropdown( | |
["Bachelors", "Some-college", "11th", "HS-grad", "Prof-school", | |
"Assoc-acdm", "Assoc-voc", "9th", "7th-8th", "12th", "Masters", | |
"1st-4th", "10th", "Doctorate", "5th-6th", "Preschool"], | |
label="Education" | |
), | |
gr.Dropdown( | |
["Married-civ-spouse", "Divorced", "Never-married", "Separated", | |
"Widowed", "Married-spouse-absent", "Married-AF-spouse"], | |
label="Marital Status" | |
), | |
gr.Dropdown( | |
["Tech-support", "Craft-repair", "Other-service", "Sales", | |
"Exec-managerial", "Prof-specialty", "Handlers-cleaners", | |
"Machine-op-inspct", "Adm-clerical", "Farming-fishing", | |
"Transport-moving", "Priv-house-serv", "Protective-serv", | |
"Armed-Forces"], | |
label="Occupation" | |
), | |
gr.Dropdown( | |
["Wife", "Husband", "Own-child", "Unmarried", "Other-relative", "Not-in-family"], | |
label="Relationship" | |
), | |
gr.Dropdown( | |
["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], | |
label="Race" | |
), | |
gr.Dropdown( | |
["Male", "Female"], | |
label="Gender" | |
), | |
gr.Slider(1, 90, step=1, label="Hours Per Week"), | |
gr.Slider(0, 100000, step=100, label="Capital Gain"), | |
gr.Slider(0, 5000, step=50, label="Capital Loss"), | |
gr.Dropdown( | |
["United-States", "Other"], | |
label="Native Country" | |
) | |
], | |
outputs="text", | |
title="Adult Income Predictor" | |
) | |
# Launch the app | |
interface.launch() | |